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PRODUCTION OF Σ HYPERNUCLEI
IN THE (K−, π+) REACTION

AND THE ΣN INTERACTION∗
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Pion spectra from (K−, π+) reactions on 16O and 9Be targets in the
region of Σ production are analyzed in impulse approximation for differ-
ent strengths of the Σ single particle potential. It is concluded that this
potential is repulsive. It is pointed out that among the Nijmegen models
of the hyperon–nucleon interaction only model F is compatible with this
conclusion.

PACS numbers: 21.80. +a

1. Introduction

Our knowledge of the hyperon (Y ) nucleon (N) interaction is quite in-
complete because the free space Y N scattering data are extremely limited.
In this situation, the construction of a realistic Y N interaction usually re-
lies on a combined analysis of the available NN and Y N scattering data, in
which SU symmetry relations are assumed. In this way, three models of the
Y N interaction have been worked out by the Nijmegen group: model D [1].
model F [2], and the soft-core model [3]. These models of the Y N interac-
tions do not lead to identical predictions concerning the hyperon interaction
in hypernuclei. In particular, they lead to different predictions of the single
particle (s.p.) potential of the Σ hyperon in Σ hypernuclei, UΣ (see [4–6]).

In the present paper we discuss an empirical determination of UΣ and the
possibility of finding in this way the best model of the Y N interaction, i.e.,
the one compatible with the empirical UΣ . Our empirical determination of
UΣ consists of fitting UΣ to the pion spectrum measured in the strangeness
exchange reaction (K−, π+). We simply calculate the cross section for the
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(K−, π+) reaction in the impulse approximation with different strengths of
UΣ , and compare it with experimental results.

We consider the case of the (K−, π+) reaction because here only one di-
rect elementary strangeness exchange process K−P → π+Σ− occurs, which
leads to the formation of a definite hypernucleus, namely a Σ− hypernu-
cleus. (In the case of the (K−, π−) reaction both Σ+ and Σ0 hypernuclei
may be produced.)

The paper is organized as follows. In Section 2, we calculate in the im-
pulse approximation the cross section for the (K−, π+) reaction, and obtain
final expressions for the spectrum of the produced pions. In Section 3, we
present our results for the (K−, π+) reaction on the 16O and 9Be targets
and compare them with the experimental data. Discussion of our results
and conclusions are presented in Section 4.

2. Cross section for the (K−, π+) reaction
in the impulse approximation

In the Σ s.p. model, the motion of Σ− in the hypernucleus is described
by the wave function ψΣ(r) which is the solution of the s.p. Schrödinger
equation with the s.p. potential UΣ(r) = VΣ(r) + iWΣ(r), where WΣ rep-
resents the absorption due to the ΣΛ conversion process Σ−P → ΛN . The
target protons involved in the elementary process K−P → π+Σ− are de-
scribed by the wave functions ψP (r) which are bound state solutions of the
s.p. Schrödinger equation with the shell model potential VP (r).

We want to calculate the cross section for the (K−, π+) reaction in which
the kaon with momentum kK (in units of ~) and energy EK transfers its
strangeness to the target proton in the state ψP (with s.p. energy eP ) and

emerges in the final state as pion in the direction k̂π with energy Eπ (both
EK and Eπ are total energies including rest masses). We denote by kΣ the
momentum of the Σ− hyperon in the final state. We apply the impulse
approximation with K− and π+ plane waves, assume a zero-range spin-
independent interaction for the elementary process K−P → π+Σ− (with
a constant transition matrix t) and obtain (with spins suppressed in the
notation):

d3σ

dk̂Σdk̂πdEπ

=
EKEπMΣc

2kπkΣ

(2π)5(~c)6kK

∣

∣

∣

∣

t

∫

dr exp(−iqr)ψΣ,kΣ

(r)(−)∗ψP (r)

∣

∣

∣

∣

2

,

(1)

where the momentum transfer q = kπ −kK , and ψΣ,kΣ

(r)(−) is the Σ scat-

tering wave function which behaves asymptotically as exp(ikΣr) + incoming
wave.
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The energy conservation imposes the following relation between the en-
ergies of the particles involved in the (K−, π+) reaction:

εΣ =
~

2k2
Σ

2MΣ
= MP c

2 −MΣc
2 + eP +EK − Eπ . (2)

Notice that the recoil of the hypernucleus is neglected here.
If only the energy spectrum of pions at fixed k̂π is measured then this

spectrum, d2σ/dk̂πdEπ, is obtained by integrating cross section (1) over k̂Σ:

d2σ(lP jP )

dk̂πdEπ

=

∫

dk̂Σ

{

d3σ(lP jP )

dk̂Σdk̂πdEπ

}

. (3)

Here, we have indicated explicitly the quantum numbers lP jP of the s.p.
state ψP of the proton on which the elementary processK−P → π+Σ− takes
place. To get the experimental pion spectrum, we have to sum expression
(3) over all states occupied by target protons.

Let us consider the case when the lP jP proton shell is closed, i.e., when
all the 2jP + 1 magnetic substates of the lP jP shell are occupied by protons
(as is the case with the 16O target considered in the next Section). When we
introduce the spin coordinate ξ and the Σ and P magnetic quantum numbers
µΣ and mP , we may write the total contribution of the lP jP proton shell to
the pion spectrum in the form:

d2σ(lP jP )

dk̂πdEπ

=
EKEπMΣc

2kπkΣ

(2π)5(~c)6kK
|t|2S(lP jP ) , (4)

S(lP jP ) =
∑

µΣmP

∫

dk̂Σ

∣

∣

∣

∣

∫

dτ exp(−iqr)ψΣ,kΣµΣ

(r)(−)∗ψP,lP jP mP
(r)

∣

∣

∣

∣

2

,

(5)

where the Σ scattering wave function ψ
(−)

Σ,kΣµΣ

behaves asymptotically as a

plane wave with momentum kΣ and spin projection µΣ + incoming wave,
ψP,lP jP mP

is the normalized proton wave function in the s.p. state with
quantum numbers lP jPmP , and

∫

dτ denotes the r integration and the ξ
summation.

A straightforward calculation (similar to that in [7]) leads to the following
expression for S(lP jP ) in terms of Wigner 3-j and 6-j symbols:

S(lP jP ) = (4π)2(2jP + 1)(2lP + 1)
∑

Llj

(2j + 1)(2L + 1)(2l + 1)

×

(

L lP l
0 0 0

)2 {

jP 1/2 lP
l L j

}2

|〈lj|jL(qr)|lP jP 〉|
2,(6)
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with

〈lj|jL(qr)|lP jP 〉 =

∫

drulj(kΣ ; r)(−)∗jl(qr)RlP jP
(r) , (7)

where RlP jP
(r)/r is the radial part of ψP,lP jP mP

and ulj(kΣ ; r)(−)/r is the
radial part of the lj component of ψΣ,kΣµΣ

, whose asymptotic behaviour is

ulj(kΣ ; r)(−)/r − jl(kΣr) ∼ h
(2)
l (kΣr).

In the case of the 9Be target considered in the next Section, we assume
a simple shell model in which there are only two p3/2 protons (coupled
to J = 0) whereas in a closed p3/2 shell there would be four protons. A
straightforward calculation leads to the not surprising conclusion that in
this case S(1, 3/2) in (4) should be replaced by 1

2S(1, 3/2).

3. Results for the 16O and 9Be targets

Let us start with the case of the 16O target. Similarly as in [8], we
assume for the Σ s.p. potential the form of a square well (without the
repulsive surface bump considered in [8]),

UΣ(r) = −(VΣ0 + iWΣ0)θ(R− r) , (8)

with R = 3 fm. For the depth of the absorptive potential, we use the value
WΣ0 = 2.5 MeV, obtained in [9] and [10] from the Σ−P → Λn cross section.
For the depth VΣ0 we assume values varying from −20 to 20 MeV. Notice
that VΣ0 is positive for an attractive and negative for a repulsive potential.

For the proton s.p. potential, we use — as in [8] — the form:

UP (r) = −VP0θ(R− r) − VP lslsδ(R − r) , (9)

with VP0 = 46 MeV and VP ls = 15 MeV fm. This potential leads to the
s.p. proton energies in the p1/2 and p3/2 states: eP (p1/2) = −12.5 MeV
and eP (p3/2) = −19.1 MeV, which agree with the corresponding empirical

proton energies in 16O, −12.5 and −19 MeV [11].
The Coulomb interaction of Σ− and the target proton is not taken into

account explicitly. Its average value inside the nuclear core is ±4 MeV, and
we assume that it is included into VΣ0 and VP0.

The only experimental results for the (K−, π+) reaction on 16O have been
obtained in the early CERN experiments [12] at pK = 450 MeV/c (θ = 0◦).

In Fig. 1, the data of [12] are compared with our results for d2σ/dk̂πdEπ

obtained with four values of VΣ0: −20 MeV (curve A), −10 MeV (curve B),
10 MeV (curve C), and 20 MeV (curve D). The BΣ on the abscissa is the
separation (binding) energy of Σ− from the hypernucleus produced (in the
ground or excited state) with the nuclear core left in its ground state. (If
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the hypernucleus produced consists of the hyperon attached to the nuclear
core in a state with an excitation energy E∗, we have −BΣ = εΣ +E∗.) We
restrict ourselves to energies −BΣ < 20 MeV, because at higher energies the
spectrum is dominated by the continuum due to the K− → 3π decay. Since
the data of [12] are only counting rates, our calculated results are normalized
to match the overall magnitude of the data.
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Fig. 1. Pion spectrum from (K−, π+) reaction on 16O at θ = 0◦ at pK = 450

MeV/c. See text for explanation.

In the energy range considered, only K− interaction with p1/2 and p3/2

protons in 16O contribute to the pion spectrum. This is best visible in
the curve C, in which the maximum at lower (higher) energy −BΣ results
from the K− interaction with the p1/2 (p3/2) protons. The C and D curves
(obtained with attractive VΣ) show an overall better agreement with the
experimental data than the A and B curves (obtained with repulsive VΣ).
{Actually the agreement may be further improved if one adds to VΣ a re-
pulsive surface bump [7, 8].}

In the case of the 9Be target, we again assume expressions (8), (9) with

the only difference that R is replaced by R̃ = 2.84 fm. This leads to the s.p.
proton energies in the p3/2 and s1/2 states: ẽP (p3/2) = −16.888 MeV and
ẽP (s1/2) = −29.8 MeV, which should be compared with the corresponding

empirical proton energies in 9Be, −16.888 and −(25–26) MeV [13].
Recently, the (K−, π) reaction on the 9Be target has been investigated

experimentally at pK = 600 MeV/c (θ = 4◦) at BNL [14] (see also [15]). In
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Fig. 2, the data of [14] are compared with our results obtained with four
values of VΣ : −20, −10, 10, and 20 MeV (curves A,B,C, and D). Similarly
as in Fig. 1, our curves in Fig. 2 contain normalization factors.
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Fig. 2. Pion spectrum from (K−, π+) reaction on 9Be at θ = 4◦ at pK = 600

MeV/c. See text for explanation.

In the case of the 9Be target, K− may interact either with p3/2 or with
s1/2 protons, and we have two contributions to the pion spectrum. This is
best visible in the curve C, in which the maximum at lower (higher) energy
results from the K− interaction with the p3/2 (s1/2) protons. Contrary to
the situation in Fig. 1, here the A and B curves (obtained with repulsive VΣ)
show an overall agreement with the experimental data in contradistinction
to the C and D curves (obtained with attractive VΣ) which fail completely
in reproducing the data at higher −BΣ.

4. Discussion and conclusions

Our analysis of the (K−, π+) reaction on the 16O target and on the 9Be
target leads to different conclusions concerning the s.p. Σ potential VΣ.
However, the recent BNL results with the 9Be target have been obtained
with an order of magnitude better statistics than that reported in the early
CERN experiments with the 16O target. If consequently, we attribute more
weight to the BNL data, we come to the conclusion that VΣ is repulsive with
VΣ0 ∼ −(10–20) MeV. A similar conclusion, that VΣ is repulsive, has been
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drawn from the analysis of the energy levels of Σ− atoms [16] (although the
analysis is not very sensitive to the strength of VΣ in the central part of the
nuclei).

Starting with the two-body Y N interaction, one may calculate the s.p.
potential VΣ in nuclear matter by applying the Brueckner theory (see [4–
6]). In particular in [6], such calculations have been performed with the
three models of the Nijmegen Y N interaction (model D [1], model F [2],
and the soft-core model [3]) mentioned in the Introduction. Although the
accuracy of these calculations is not well established (see, e.g., [17]), the sign
of the resulting VΣ appears to be reliable. Among the three models, only
model F leads to a repulsive VΣ with a strength estimated in [6] to be of
the order magnitude compatible with our present estimate (especially if one
takes into account the ambiguity in the choice of the intermediate energy
spectrum used in the G matrix equation).

Thus we are led to the conclusion that among the Nijmegen barion–
barion interactions, only model F is compatible with our analysis of the
(K−, π+) reaction. (Notice that model F takes into account the exchange
of the whole nonet of scalar mesons, and was introduced as an improvement
of model D.)

Let us mention another approach to the problem of Σ hypernuclei based
on the relativistic field model (see, e.g., [18]), in which barions are described
as Dirac particles coupled to mesons. Our conclusion that VΣ is repulsive,
should be helpful in constructing the proper relativistic field model. Namely,
it imposes a restriction on the strength of the coupling between mesons and
hyperons.

The conclusion of the present paper should be considered as a tenta-
tive one. Strangeness exchange experiments with an improved statistics on
heavier targets, especially on 16O, would be most helpful in our analysis.
On the other hand, several refinements of our simple approach are needed,
especially taking into account the isospin structure of the Σ hypernuclei,
which are different in the case of the 16O and 9Be targets.
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