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Based on an explicit verification of the coupling matrix elements be-
tween the 1p1h and 2p2h states we propose a new method of selecting the
most important 2p2h states responsible for fragmentation effects. In this
way the dimensionality of the problem is reduced, such that the compu-
tation becomes feasible and the spreading of the strength is realistic, as
verified by some tests of convergence. Calculations in 208Pb show that due
to sizeable mixing effects only about 50% of the total isoscalar giant dipole
resonance (ISGDR) 3~ω strength is located in the energy region between 20
and 25 MeV. This is the energy region which currently is available in exper-
iment. Even above 30 MeV we find about 10% of the total strength. This
indicates that the current experimental evaluations of the ISGDR centroid
energy may significantly underestimate its value.

PACS numbers: 21.60.–n, 24.30.Cz

In formal terms many interesting nuclear modes of excitation |f〉, as for
instance the nuclear giant resonances, are generated by one-body operators

of the type f̂ =
∑

αβ fαβa†αaβ such that

|f〉 = f̂ |0〉 =
∑

n

〈n|f̂ |0〉|n〉, (1)
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The symbol |0〉 represents the ground state and |n〉 the spectrum of eigen-
states in a corresponding subspace. For such excitation modes certain global
aspects of the strength function

Sf (E) =
∑

n

Sf (n)δ(E − En), (2)

where
Sf (n) = |〈n|f̂ |0〉|2, (3)

can thus be described in the subspace of one-particle – one-hole (1p1h) (|1〉 =

a†pah|0〉) states generated by the nuclear mean field. In the 1p1h subspace we
thus have |n〉 =

∑
1
cn
1
|1〉. In general, however, such states no longer remain

the exact eigenstates when more complex configurations of the npnh-type
are taken into account. The 1p1h components of a much larger number
of new eigenstates |n〉 are then spread over many more corresponding new
eigenvalues. This is a mechanism of fragmentation. The nuclear interaction
is predominantly two-body in nature and thus directly couples the 1p1h
states to the 2p2h ones only. Therefore, in practical terms it is enough [1]
to diagonalize the nuclear Hamiltonian

Ĥ =
∑

i

εia
†
iai +

1

4

∑

ij,kl

vij,kla
†
ia

†
jalak, (4)

in the combined space of 1p1h and 2p2h states. In this equation the first
term denotes the mean field which in the present work is taken as a local
Woods-Saxon potential including the Coulomb interaction. The second term
is the residual interaction with antisymmetrized matrix elements vij,kl and in
the following discussion is represented by the density-dependent zero-range
interaction of Ref. [2].

The Hamiltonian matrix then reveals the following structure:<1jĤj10> <1jĤj2>
<1jĤj2> <2jĤj20>

Even after such a truncation the dimension of the above matrix is usu-
ally still much too large to be numerically diagonalized. This in particular



Configuration Mixing Effects in Isoscalar... 2241

holds true for the isoscalar giant dipole resonance (ISGDR) [3]. This 3~ω
excitation is typically located in the energy region above 20 MeV and the
number of relevant 2p2h states is of the order of 106. An interesting con-
clusion can however be drawn from Fig. 1 which shows the distribution of
the coupling matrix elements 〈1|Ĥ |2〉 between the 1p1h and 2p2h states in
the Jπ = 1− sector of the 208Pb nucleus. These states are here generated by
the six mean field shells (three above and three below the Fermi surface).
As it is clearly seen from Fig. 1 there is only a very small fraction of the
coupling matrix elements which significantly differ from zero. This seems to
offer an extra criterion for selecting the most important 2p2h states. Thus,
by setting a finite positive threshold value Hth one can select the 2p2h states
such that |〈1|Ĥ |2〉| ≥ Hth for those 1p1h states which carry the strength.
Interestingly, an explicit numerical verification shows that even a relatively
severe selection according to this prescription on average preserves a form of
the distribution of 2p2h states. What in this connection is particularly im-
portant is that, as an example in Fig. 2 illustrates, even certain high energy
2p2h states survive selection and thus a possibility to move the strength to
higher energies is retained.

Fig. 1. Distribution of the coupling matrix elements between the 1p1h and 2p2h

states for Jπ = 1− sector in 208Pb.

We now evaluate the ISGDR strength distribution using a prescription
as described above. ISGDR is one of the most interesting nuclear excitation
modes. This partly originates from the fact that its centroid energy can di-
rectly be related to the nuclear compression modulus [4]. The corresponding
one-body isoscalar dipole operator reads:

f = r3Y1 − ηrY1, (5)

where η = 5〈r2〉/3. The second term in this equation removes the spurious
center of mass motion component from the operator r3Y1 [5]. The result-
ing 3~ω strength distribution in 208Pb on the 1p1h level is shown in Fig. 3.
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Fig. 2. Energy distribution of all the 2p2h states generated by the six major mean

field shells (a). (b) corresponds to those 2p2h states (2) which fulfil the condition

|〈1|Ĥ |2〉| ≥ 0.3 MeV. The symbol N denotes the number of states in the bin of

energy equal to 0.2 MeV.

Fig. 3. Isoscalar 3~ω dipole strength distribution in 208Pb calculated in the sub-

space of 1p1h states.

Almost all this strength is located between 20 and 25 MeV. This about cor-
responds to the energy region where the isoscalar dipole strength can be
identified in the present day experiments on 208Pb [6]. The picture changes
however significantly when mixing due to the coupling to 2p2h states is al-
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Fig. 4. Isoscalar 3~ω dipole strength distribution in 208Pb calculated in the space

of 1p1h and 2p2h states, for three different values of Hth.

lowed. This is illustrated in Fig. 4 which on the three successive panels
indicates a degree of fragmentation for Hth = 0.4, 0.3 and 0.2 MeV (from
bottom to top). The number of the corresponding 2p2h states included
equals 349, 1125 and 4374, respectively. Consistently with our previous in-
vestigations [7] a specific form of the resulting strength distribution strongly
depends on many factors and thus also on Hth. However, more global char-
acteristics, like a percentage of the total strength in certain sufficiently large
energy windows is much more stable as can be concluded from Table 1 which
lists such quantities for energies above 25 and 30 MeV, respectively.
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TABLE I

Percentage of the total isoscalar 3~ω dipole strength in 208Pb calculated in the

space of 1p1h and 1p1h states in the energy region above 25 MeV and above 30

MeV, respectively, for the three different values of Hth. The numbers in parenthesis

list the corresponding numbers of 2p2h states.
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A reasonable convergence of those results, together with a realistic input
of the present model, provides quite a convincing indication that one may
expect about 50% of the total Jπ = 1− isoscalar 3~ω strength in the higher
energy region, above 25 MeV, i.e., in the region which is dominated by
many other multipoles and thus this portion of the strength escapes an
experimental detection. Even above 30 MeV one finds almost 10% of the
total strength. The present calculations thus suggest that a recent empirical
estimation [6] of the nuclear incompressibility (KA = 126±6 MeV) for 208Pb
may appear much to low.
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