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The connection between the barion–barion interaction and the prop-
erties of hypernuclei, in particular Σ hypernuclei, is discussed. The in-
adequate accuracy of the so called low order Brueckner approximation is
pointed out. The single particle Σ potential fitted to the pion spectrum
measured in the (K−, π+) reactions appears to be repulsive. This elimi-
nates some of the existing models of the barion–barion interaction.

PACS numbers: 21.80. +a

1. Introduction

I want to discuss the description of hypernuclei, especially Σ hypernuclei,
which starts from realistic barion–barion interaction. Three models of such
Y N interaction have been worked out by the Nijmegen group (model D [1],
model F [2], and the soft-core model [3]) and two models by the Jülich group
(models A and B [4–6]). In applying these models of the Y N interaction
to the description of finite hypernuclei, one usually makes the local density
approximation in which the hypernucleus in each point is approximated as a
piece of nuclear matter. Thus the starting point is the theory of the system
of nuclear matter plus a hyperon. A critical discussion of the present state
of this theory is presented in Section 2.

The existing models of the Y N interaction do not lead to identical pre-
dictions concerning the hyperon interaction in hypernuclei. In particular,
they lead to different predictions of the single particle (s.p.) potential of the
Σ hyperon in Σ hypernuclei, UΣ (see [7–9]). In Section 3, I present an em-
pirical estimate of UΣ consisting of fitting it to the pion spectrum measured
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in the strangeness exchange reaction (K−, π+). This offers the possibility of
finding the best model of the Y N interaction, i.e., the one compatible with
the empirical UΣ.

2. Hyperon binding in nuclear matter

I want to discuss the accuracy of the theoretical calculations of the prop-
erties of the system of nuclear matter and a hyperon. I shall consider the
simplest case, namely that of a Λ hyperon, for which some results concerning
the accuracy of the calculations are available.

The principal goal is here the calculation of the Λ binding energy in nu-
clear matter, BΛ, which is equal to the depth of the Λ s.p. potential UΛ.
Its semi-empirical value BΛ,se ≃ 28 MeV. The early calculations resulted in
values of BΛ much bigger than BΛ,se. It was suggested by Bodmer [10] that
most important in solving this overbinding problem is the suppression of the
strong ΛΣ conversion process ΛN ↔ ΣN ′ in nuclear matter due to Pauli
blocking and binding effects. Indeed, low order Brueckner (LOB) calcula-
tions with realistic barion–barion interactions, which include ΛΣ coupling,
like model D [1] and model F [2] potentials of the Nijmegen group, led to
BΛ ≃ 30 MeV [11]. The situation with other realistic barion–barion interac-
tion models is similar (see, e.g., [9]): the calculated BΛ is in agreement with
BΛ,se.

However, this conclusion might be premature because of the uncertain
accuracy of the LOB approximation. In this approximation, the depth of
the s.p. potential in nuclear matter of a Λ with zero momentum, UΛ = −BΛ,
is given by:

UΛ ≃ VΛ =

kN <kF
∑

kN

(kNkΛ=0|KΛN |kNkΛ=0) , (1)

where kF is the Fermi momentum of nuclear matter, and the ΛN reaction
matrix KΛN satisfies the equation
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(2)
By εN and εΛ, we denote the kinetic energies of nucleon and Λ (e.g., εΛ(k′

Λ) =
~

2k2
Λ/2MΛ) and by eN the s.p. nucleon energy (eN = εN + VN , where VN

is the nucleon s.p. potential). The computational convenience is the only
justification for the choice of pure kinetic energies in the intermediate states



Problems in Hypernuclear Physics 2247

in (2). In the original Brueckner theory the s.p. energies in the intermediate
states contained also s.p. potentials [12, 13].

To test the accuracy of the LOB approximation, let us compare it with
the variational Jastrow approach, in which we have:

BΛ =
< ΨNM|HNM|ΨNM >

< ΨNM|ΨNM >
−

< ΨNM+Λ|HNM+Λ|ΨNM+Λ >

< ΨNM+Λ|ΨNM+Λ >
, (3)

where HNM and HNM+Λ are the Hamiltonians of nuclear matter and of the
nuclear matter+Λ system, and the respective wave functions are:

ΨNM =
∏

i<j

fNN (rij)ΦNM, ΨNM+Λ =
∏

i

fNΛ(r0i)ϕ(0)ΨNM , (4)

where ΦNM is the wave function of noninteracting nucleons in the Fermi sea
of nuclear matter, ϕ is the zero momentum plane wave of Λ (particle number
0), and fNN and fNΛ are the NN and NΛ correlation functions.

Notice that although each of the expectation values in (4) has the varia-
tional upper bound property, their difference may be both bigger or smaller
than the true value of BΛ, when the expectation values are calculated with
approximate wave functions. In the calculations described here [14], the best
form of fNN , determined for pure nuclear matter, was used, and fNΛ was
determined by finding the maximum value of expression (4) for BΛ.

As an example, let us consider the case of the central spin dependent ΛN
interaction of Herndon and Tang [15] with no exchange (x = 0), denoted
by HNX in [14], and the NN interaction OMY [16]. Both interactions
have a relatively large hard core radius of 0.6 fm, which makes the test
of accuracy of the BΛ calculation more severe. In applying the Jastrow
method, the Fermi-hypernetted-chain (FHNC) method [17] was used with
the result: BΛ,FHNC = 77.0 MeV, which is much larger than the LOB result,
BΛ,LOB = 59.5 MeV. Let us mention that the early Jastrow type calculations
[18, 19] in the low order cluster (LOC) approximation led to the result,
BΛ,LOC = 75 MeV, which is rather close to the FHNC result. This seems to
suggest that a farther improvement of the Jastrow type calculation would
not essentially change the resulting BΛ, and that the discrepancy between
the variational Jastrow and Brueckner theory results for BΛ is caused by
the inaccuracy of LOB.

The peculiar feature of LOB are the pure kinetic energies in the inter-
mediate states in (2), which are hard to accept intuitively. They lead to a
big energy gap in the s.p. spectrum, which reduces the calculating binding.
In the case of the soft-core Nijmegen interaction [3], removing the gap with
the help of a continuous s.p. spectrum increases BΛ by 32 % [9].

The choice of the s.p. spectrum in K-matrix equation (2) is irrelevant,
provided higher order terms are calculated. The Brueckner theory is an
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expansion in the number of hole lines, and the small parameter is the “wound
integral”

κNN = ̺ <

∫

dr|Ψk(r)eikr|2 >Av , (5)

where ̺ is the nuclear density, Ψk(r) is the wave function of the relative
NN motion in nuclear matter with the relative momentum k, and 〈 〉Av

denotes averaging over the Fermi sea. In the case of the nuclear matter
+ Λ system, there is a second small parameter κNΛ connected with the
“wound” in the relative NΛ wave function. In the case of the OMY and HNX
interactions the two wound integrals in the LOB theory are approximately
equal ∼ 0.22− 0.23. The LOB theory is a two hole line approximation, and
we expect that the three hole line corrections to be of the order of 22-23%,
which could explain the difference between the LOB and HFNC results.

The two and three hole line diagrams in the Brueckner theory of BΛ are
shown in Fig.1. Diagram (a) represents BΛ,LOB, Eq. (1). Diagram (b) is the
rearrangement contribution to BΛ, which is equal κNNVΛ [20]. If we collect
the contributions of diagrams (a) + (b), we get

−BΛ = UΛ = (1 − κNN )VΛ . (6)

It became a standard procedure in the LOB calculations of BΛ to apply
expression (6). This of course is not correct, because together with diagram

Fig. 1. Two and three hole line contributions to BΛ. Single lines are nucleons, the

double line denotes Λ.
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(b) one should consider the remaining three hole diagrams (c), the genuine
three body diagrams whose contribution to BΛ, BΛ3, is expected to be of
the same order of magnitude as the rearrangement contribution. Notice
that there are infinitely many diagrams (c), and to sum them all one has
to solve a Faddeev type equation (see [21]). No complete calculation of
BΛ3 with realistic interactions has been performed so far. The few existing
estimates [21], [22] are not conclusive because they are either approximate
or/and apply simplified interactions.

To summarize, it appears that LOB may seriously underestimate BΛ. It
would be very important to calculate BΛ3, and also to apply the variational
FHNC approach to the BΛ problem with realistic barion–barion interactions.

3. Production of Σ hypernuclei in the (K−, π+) reactions

Now, we shall follow [23] and discuss a direct empirical estimate of UΣ.
The pion spectrum measured in the (K−, π+) reactions in the energy range of
Σ production is sensitive to UΣ. Thus by analyzing this spectrum in impulse
approximation, we may estimate the strength of UΣ. We consider the case of
the (K−, π+) reaction because here only one direct elementary strangeness
exchange process K−P → π+Σ− occurs, which leads to the formation of
a definite hypernucleus, namely a Σ− hypernucleus. (In the case of the
(K−, π−) reaction both Σ+ and Σ0 hypernuclei may be produced.)

Similarly as in [24], we assume for the Σ s.p. potential the form of a
square well (without the repulsive surface bump considered in [24]),

UΣ(r) = −(VΣ0 + iWΣ0)θ(R − r). (7)

For the depth of the absorptive potential, we use the value WΣ0 = 2.5
MeV, obtained in [25] and [26] from the Σ−P → Λn cross section. For the
depth VΣ0 we assume values varying from -20 to 20 MeV. Notice that VΣ0

is positive for an attractive and negative for a repulsive potential.
Similarly as in [24], the state of the target proton which participates in

the elementary strangeness exchange process K−P → π+Σ−, is described
by the s.p. wave function of the shell model with the potential

UP (r) = −VP0θ(R − r) − VP lslsδ(R − r), (8)

with VP0 = 46 MeV and VP ls = 15 MeV fm. The radius R which is the
same as in (7) is adjusted to the empirical s.p. proton energies in the target
nucleus.

The early CERN measurements of the strangeness exchange reactions
suggested an attractive UΣ . One of these measurements, namely the mea-
surement of the pion spectrum from the (K−, π+) reaction on the 16O target
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is analyzed in [23]. Actually these early CERN measurements were the rea-
son for using in problems of Σ hypernuclei the Nijmegen model D of the
barion–barion interaction because it leads to an attractive UΣ.

Recently, the (K−, π) reaction on the 9Be target has been investigated
experimentally at pK = 600 MeV/c at BNL [27] (see also [28]) with an order
of magnitude better statistics than that reported in the early CERN exper-
iments. In Fig. 2, the pion spectrum from the (K−, π+) reaction measured
at BNL [27] is compared with our results obtained with four values of VΣ0:
–20, –10, 10, and 20 MeV (curves A,B,C, and D respectively). The BΣ on
the abscissa is the separation (binding) energy of Σ− from the hypernucleus
produced. Since the data of [27] are only counting rates, our calculated re-
sults are normalized to match the overall magnitude of the data. We see
that the A and B curves (obtained with repulsive UΣ) show an overall agree-
ment with the experimental data in contradistinction to the C and D curves
(obtained with attractive UΣ) which fail completely in reproducing the data
at higher −BΣ.

Fig. 2. Pion spectrum from (K−, π+) reaction on 9Be at pK = 600 MeV/c. See

text for explanation.

Because of the much higher accuracy of the BNL results than that of
the early CERN results, we shall restrict ourselves to the BNL results. Thus
we conclude that UΣ is repulsive with VΣ0 ∼ −(10 − 20) MeV. A similar
conclusion, that UΣ is repulsive, has been drawn from the analysis of the
energy levels of Σ− atoms [29] (although the analysis is not very sensitive
to the strength of UΣ in the central part of the nuclei).

Starting with the two-body Y N interaction, one may calculate the s.p.
potential VΣ in nuclear matter by applying the Brueckner theory (see [7–9]).
In particular in [9], such calculations have been performed with the three
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models of the Nijmegen Y N interaction (model D [1], model F [2], and the
soft-core model [3]) mentioned in the Introduction. Although we have seen
in the previous Section that the accuracy of these calculations is not well
established, the sign of the resulting VΣ0 appears to be reliable. Among the
three models, only model F leads to a repulsive VΣ with a strength estimated
in [9] to be of the order magnitude compatible with our present estimate.
Thus we are led to the conclusion that among the Nijmegen barion–barion
interactions, only model F is compatible with our analysis of the (K−, π+)
reaction. (Notice that model F takes into account the exchange of the whole
nonet of scalar mesons, and was introduced as an improvement of model D.)

Let us mention another approach to the problem of Σ hypernuclei based
on the relativistic field model (see, e.g., [30]), in which barions are described
as Dirac particles coupled to mesons. Our conclusion that VΣ is repulsive,
should be helpful in constructing the proper relativistic field model. Namely,
it imposes a restriction on the strength of the coupling between mesons and
hyperons.
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