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A recent development on the working of effective field theories in nu-
clei and in dense hadronic matter is discussed. We consider two extreme
regimes: One, dilute regime for which fluctuations are made on top of the
matter-free vacuum; two, dense systems for which fluctuations are treated
on top of the “vacuum” defined at a given density, with masses and coupling
constants varying as function of matter density (“Brown–Rho scaling”).
Based on an intricate — as yet mostly conjectural — connection between
the in-medium structure of chiral Lagrangian field theory which is a beau-
tiful effective theory of QCD and that of Landau Fermi liquid theory which
is an equally beautiful and highly successful effective theory of many-body
systems, it is suggested that a chiral Lagrangian with Brown–Rho scaling
in the mean field is equivalent to Fermi-liquid fixed point theory. I make
this connection using electroweak and strong responses of nuclear matter
up to nuclear matter density and then extrapolating to higher densities
encountered in heavy-ion collisions and compact stars.

PACS numbers: 11.10.–z, 12.39.Fe

1. Introduction

Effective Field Theories (EFTs) are a powerful tool not only in particle
and condensed matter physics [1, 2] where they are more extensively stud-
ied but also more recently, in nuclear physics [3–9] where phenomenological
approaches have traditionally been amply successful, thus drawing less at-
tention to field-theory approaches. There are two superbly effective field
theories that are quite relevant to nuclear physics. One is chiral Lagrangian
field theory as a low-energy effective theory of QCD and the other is Landau

∗ Presented at the NATO Advanced Research Workshop, Cracow, Poland, May 26–30,
1998.

(2297)



2298 M. Rho

Fermi liquid theory as a semi-phenomenological theory for nuclear matter.
Both are beautiful examples of how effective field theory works in hadronic
systems. For nuclear many-body systems and most of all for dense matter,
both figure importantly. The first involves what I would call “chiral scale”
with the chiral cutoff Λχ ∼ 1 GeV setting the scale below which the the-
ory is useful and the second involves “Fermi-liquid scale” set by the Fermi
momentum given by the density of the system.

In this talk, I would like to develop arguments that suggest that combin-
ing the two effective theories leads naturally to the notion of BR scaling [10]
which has recently found a simple and striking application [11] in the heavy-
ion data of the CERES collaboration [12]. If the arguments are correct, the
implication is that what one usually attributes to change in the QCD vac-
uum — a quantity that is the focus of the present day nuclear and hadronic
physics — may be related, albeit indirectly, to many-body interactions on
top of the matter-free vacuum. This may be considered as a manifesta-
tion of how two apparently different dynamical pictures represent the same
physical phenomenon or in the language of [9] a variant of the Cheshire-Cat
phenomenon.

2. Strategy for effective theory

The idea of effective field theory is rather simple. Consider a generic
field Φ which we would like to study at an energy scale less than a typical
energy scale Λ1. Let us divide the field into the one we are interested in
and the one we are not. In terms of energy scales, the former corresponds
to ΦL for E < Λ1 and the latter to ΦH for E > Λ1, Φ = ΦL + ΦH . We are
interested in the Feynman integral

Z =

∫

[dΦ]eiS[Φ] =

∫

[dΦL][dΦH ]eiS[ΦL,ΦH ].

Since we are not interested in the degrees of freedom represented by ΦH , we
will integrate it out of the Feynman integral. Define

eiS
eff [ΦL] =

∫

[dΦH ]eiS[ΦL,ΦH ] , (1)

then the generating functional (when sources are suitably incorporated) is

Z =
∫

[dΦL]eiS
eff [ΦL]. This is an exact result since we have not done anything

other than redefine things. Therefore we could have chosen the cutoff scale
at Λ2 < Λ1. In fact we could define the effective action for any arbitrary scale
by “decimating” the cutoff. If everything is done correctly, physical quantities

should not depend upon how the Λi’s are chosen. This statement is translated
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into “renormalization-group invariance”. Now in our case, although we know
what the correct theory is (that is, QCD), we do not yet know how to
describe low-energy dynamics in terms of the QCD variables (quarks and
gluons). What we see in nature are color-singlet hadrons. So the strategy is
to write the effective action at a given cutoff Λi as an infinite series — and
suitably truncate them — in terms of known variables

Seff
Λi

=

∞
∑

n=0

CnQn , (2)

where Q’s are local operators involving (observable) hadron fields written
in increasing power of momentum and/or of square of pion mass and C’s
are constants that are “natural”. In writing this expansion, one appeals to
symmetries such as Lorentz (or Galilei) invariance, chiral invariance etc. In
the usual chiral perturbation theory, the expansion involves the pion and
baryon fields with the power (∂/Λχ)n and/or (m2

π/Λ
2
χ)n.

How the effective action (2) changes under “decimation” is expressed
through Wilson’s renormalization group-flow equation [2]. This implies that

the Λi-dependent coefficients in (2) satisfy the Wilson equation ∂Ci(Λ)
∂Λ

=
FΛ(Ci) where F is a known function of Ci. In some cases, certain coefficients
stay constant under the decimation due to the presence of “fixed points”.
We shall see later that nuclear matter is described by a fixed-point theory,
with the nucleon effective mass and the four-Fermi quasiparticle interactions
being fixed-point quantities.

3. Two-nucleon systems

I shall now illustrate how the above effective theory strategy works in
nuclear physics of two-body systems. All two-body systems at very low
energy are accurately known in nonrelativistic phenomenological approach
using two-body potentials. I propose that they can provide a precision check
of the theory that we are developing.

Focusing on very low energy at an energy scale much less than the pion
mass, mπ ≈ 140 MeV, we can integrate out all degrees of freedom — includ-
ing pions — other than the matter field, namely, the nucleon field. Pions
will be introduced later to go higher order in the expansion. In the absence
thereof, we can work up to the next-to-leading order (NLO). We choose the
cutoff Λ of the order of the pion mass. Define the four-point vertex relevant
to the process by

V (q) =
4π

M

(

C0 + (C2δ
ij +D2σ

ij)qiqj
)

+ VEM , (3)
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where VEM is the electromagnetic interaction between two protons which is
of course known, M is the nucleon mass and σij is the rank-two tensor that
is effective only in the spin-triplet channel. The coefficients C0,2 are (spin)
channel-dependent, and that D2 is effective only in spin-triplet channel.
Thus there are five parameters; two in 1S0 and three in 3S1 channel. In
principle, these parameters are calculable from a fundamental Lagrangian
(i.e., QCD) but in practice, nobody knows how to do this. So in the spirit
of EFTs, we shall fix them from experiments. Since the explicit form of
the regulator should not matter [13], we shall choose the Gaussian form

SΛ(p) = exp
(

−
p2

2Λ2

)

where Λ is the cutoff. As mentioned, the cutoff is

not a parameter to be fine-tuned; physical quantities should not depend
sensitively on it provided it is correctly chosen for the scale involved.

Given the four-point function (3), one can solve Lippman–Schwinger
equation or Schrödinger equation with (3) inserted as the kernel. This is
strictly speaking not an expansion in a rigorous accordance with the counting
rule but one can show that it is correct up to the order we are considering.

To see how the strategy works, let us consider low-energy neutron-proton
scattering. In Fig. 1 is shown the 1S0 phase shift (in degrees) vs. cutoff for
the scattering at a fixed CM momentum of p = 68.5 MeV. One sees that
below Λ ∼ mπ, the calculated phase shift varies rapidly and disagrees with
the experiment but once the cutoff is chosen at about the pion mass, there
is practically no cutoff dependence and the theory agrees very well with the
experiment as one increases the cutoff. This therefore satisfies the condition
for the consistency of an effective theory. The second condition can be seen
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Fig. 1. np 1S0 phase shift (degrees) vs. the cutoff Λ for a fixed CM momentum

p = 68.5 MeV. The NLO result is given by the solid curve and the LO result by

the dotted curve. The horizontal dashed line is the result from the v18 potential.

Note the Λ independence for Λ >∼ 150 MeV.
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in Fig. 2. For a given cutoff1, here taken at Λ = ΛZ=1 ≃ 170 MeV, the theory
agrees very well up to p <∼ 80 MeV but beyond that it starts disagreeing.
This indicates that the theory breaks down as the momentum approaches
the cutoff. This may be due to the fact that higher order terms are needed
or new physics enters into the picture. This feature is again required by the
consistency of the effective theory.
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Fig. 2. np 1S0 phase shift (degrees) vs. the center-of-mass (CM) momentum p. Our

theory with Λ = ΛZ=1 ≃ 172 MeV is given by the solid line, and the results from

the Argonne v18 potential [15] (“experiments”) by the solid dots. (See [14] for the

precise definition of ΛZ=1.) As expected the theory starts deviating as the cutoff

scale is approached signalling that “new physics” is setting in.

This simple theory turns out to work extremely well for all two-nucleon
properties [14], namely, the properties of the bound state deuteron, the
radiative np capture

n+ p→ d+ γ (4)

and the solar proton fusion process

p+ p→ d+ e+ + νe . (5)

As one can see in Table I, the NLO calculation gives a remarkable agreement
with all static properties of the deuteron, again with little dependence on the
cutoff. A much more striking case is the radiative np capture process (4) for
which the dominant contribution given by (3) with VEM turned off is found
to agree precisely with the result of the Argonne v18 potential [15]. The
∼ 10% exchange current contributions that come at the next-to-next-to-
leading order (NNLO) can also be accurately calculated [4,14]. Taking into

1 See [14] for the precise procedure of picking this cutoff. One should note that no
fine-tuning is done here. The LO calculation the cutoff ΛZ=1 corresponds to the
NLO calculation with little dependence on cutoff in the sense of Fig. 1.
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TABLE I

Deuteron properties and the M1 transition amplitude entering into the np capture

for various values of Λ.

Λ (MeV) 198.8 216.1 250 Exp. v18 [15]

Bd (MeV) 2.114 2.211 2.389 2.224 2.224

As (fm−

1

2 ) 0.877 0.878 0.878 0.8846(8) 0.885
rd (fm) 1.960 1.963 1.969 1.966(7) 1.967
Qd (fm2) 0.277 0.288 0.305 0.286 0.270
PD (%) 4.61 5.89 9.09 − 5.76
µd 0.854 0.846 0.828 0.8574 0.847
M1B (fm) 4.01 3.99 3.96 − 3.98

account inherent uncertainty in short-distance physics which makes the main
uncertainty in this process (in nuclear physics language, this has to do with
what is called short-range correlation in the wavefunction), the calculated
value for the cross-section σChPT = 334± 3 mb is in perfect agreement with
the experimental value σexp = 334.2± 0.5 mb. One could take this result as
a “first-principle” calculation. This I believe is the first such calculation in
nuclear physics.

The proton fusion process (5) plays a pivotal role for the stellar evolution
of main-sequence stars of mass equal to or less than that of the Sun. The
main contribution to the process comes from (3) (with the EM potential
included) accounting for terms up to NLO. Again exchange currents enter
at NNLO which can be incorporated in the same way as in the np case,
although the accuracy with which the NNLO terms can be calculated is not
as good as in the np case. There are up to date no laboratory experimental
data to check this prediction. The inverse process to (5) is however presently
being measured and results will be forthcoming shortly. The only data so
far available come from helioseismology in the Sun [16] which constrains the
cross-section S factor to

3.25 <∼
S(0)

10−25MeV − b
<∼ 4.59 . (6)

The recent chiral perturbation calculation to NNLO [17] — which is an exact
parallel to the np capture process — gives

S(0)ChPT = 4.05(1 ± 0.012) × 10−25 MeV − b . (7)

This is consistent with the helioseismology (6) and agrees with the value
used in the physics of solar neutrino by Bahcall and collaborators [18] using
the Argonne v18 potential

S(0)Bahcall = 4.00(1 ± 0.007+0.020
−0.011) × 10−25 MeV − b . (8)
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4. Infinite nuclear matter

4.1. Landau Fermi-liquid fixed points

Going to infinite matter bypassing all intermediate-mass nuclei, we en-
counter a new scale given by the Fermi sea occupied by nucleons. We are
still far from deriving the Fermi sea from a chiral Lagrangian, not to mention
from QCD. So I shall assume that nucleons form a Fermi sea and occupy up
to Fermi momentum kF. Consider excitations above and below the Fermi
surface. Take a cutoff for such excitations at say Λ̃1/2 below and above the
Fermi sea and integrate out the excitations whose energy is greater than
Λ̃1 and write effective actions as described above. We may then proceed
to do the “decimation” as above, but now around the Fermi surface. We
shall call this “Fermi-surface decimation”. We learn from condensed matter
systems [2] where Fermi-liquid theory plays a prominent role that as one
scales down toward the Fermi surface, there are two families of fixed points.
Transcribed to nuclear matter, one of the two is the nucleon effective mass
m⋆

N associated with the fixing of the density of the system and the other is
the four-Fermi interaction that gives the Landau Fermi-liquid interaction F .
That is to say, nuclear matter can be described by Landau Fermi-liquid fixed

point theory.

4.2. Landau parameters and BR scaling

It is possible to connect via BR scaling [10] the fixed points of Landau
Fermi liquid matter to the parameters of effective chiral Lagrangians in dense
medium. This can be done by looking at the response of a nucleon on the
Fermi surface to electroweak fields [19, 20].

By gauge invariance, the convection current of a nucleon on top of the
Fermi sea is given by the Landau–Migdal formula [21]

J = gl
p

mN
, (9)

where gl is the orbital gyromagnetic ratio given by

gl =
1 + τ3

2
+ δgl (10)

with δgl expressed in terms of Landau parameters F1 and F ′

1,

δgl =
1

6
(F̃ ′

1 − F̃1)τ3 (11)
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with F̃ = mN

m⋆

N

F . On the other hand, chiral and scale invariance of QCD

implies [10, 19]

δgl = 4
9

[

Φ−1 − 1 − 1
2 F̃

π
1

]

τ3 , (12)

where F̃ π
1 is the pionic contribution to the Landau F1 and Φ is the BR scaling

parameter related to the ratio of the quark condensate (〈q̄q〉⋆/〈q̄q〉0)
n to

some power n, the dependence of which is model-dependent. Φ is normalized
such that at zero density it is equal to 1. Now the Landau fixed-point mass
m⋆

N

mN
= (1 − F̃1/3)

−1 can also be expressed in terms of the BR scaling and

the pionic contribution,
m⋆

N

mN
= (Φ−1 − F̃ π

1 /3)
−1. Comparing (11) and (12)

for δgl, we get

F̃1 − F̃ π
1 ≈ F̃ω

1 = 3(1 − 1/Φ) , (13)

where the superscript ω indicates contributions from all massive isoscalar
vector degrees of freedom, the most important of which is the familiar ω me-
son. (All higher energy mesons of the same quantum numbers are subsumed
into that factor.) In this simplified picture, the relevant long-wavelength os-

cillation is given by the pion, F̃ π
1 , and the short-range by the ω meson, F̃ω

1 .
From giant dipole excitations in heavy nuclei, we know that δgp

l = 0, 23±
0.03 for the proton [22]. From this we find that at normal density (F π

1 is
known by chiral symmetry at any density)

Φ(ρ0) ≈ 0.78 . (14)

We will see later that this can be connected to the dropping vector meson
mass but for the moment we could simply relate it to the ratio f⋆

π/fπ and
get the ratio from Gell–Mann–Oakes–Renner mass formula applied to the
mass of an in-medium pion. Assuming that the effective pion mass increases
a bit in matter, one finds that the ratio at nuclear matter density from the
in-medium GMOR relation is ∼ 0.78 and agrees with (14). This relation has
been checked with axial-charge transitions in heavy nuclei [20, 23, 24]

An immediate check of (14) is gotten by looking at the Landau mass of
the nucleon. For (14), we get m⋆

N (ρ0)/mN ≃ 0.70. This agrees with the

QCD sum-rule result [25] 0.69+0.14
−0.07 .

4.3. Evidence from nuclear matter

The next relation we need to establish is between the scaling of the
meson masses and the BR scaling factor Φ. To do this it turns out to be
most convenient to implement the scaling masses into a chiral Lagrangian
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which in the mean field approximation gives the nuclear matter ground state
correctly. For this, write the chiral Lagrangian truncated to the form of
Walecka linear σ − ω model (that is, drop all the fields that do not enter in
the mean field) as2

LBR = ψ̄[γµ(i∂µ − g⋆
v(ρ)ω

µ) −M⋆(ρ) + hφ]ψ

+
1

2
[(∂φ)2 −m⋆2

s (ρ)φ2] −
1

4
F 2

ω +
1

2
m⋆2

ω (ρ)ω2 , (15)

where ψ is the nucleon field, ωµ the isoscalar vector field, φ an isoscalar scalar
field3 and the masses with asterisk are taken to be BR-scaling. It has been
shown [26,27] that this Lagrangian in the mean field approximation gives all

nuclear matter properties correctly (including a low compression modulus in
contrast to the linear σ − ω Walecka model which differs from (15) in that
the masses and coupling constants are non-scaling) for the canonical values
of free-space masses for the hadrons provided the BR scaling

Φ ≈ m⋆
V /mV ≈M⋆

N/mN ≈ m⋆
σ/mσ ≈ f⋆

π/fπ (16)

holds with Φ(ρ) ≈ (1 + 0.28ρ/ρ0)
−1 and the vector coupling scaling roughly

the same way. As given, the scaling of Φ is consistent with what we found
in the baryon sector (14). Although the connection is somewhat indirect,
it is also possible to extract Φ from the QCD sum-rule calculation of the ρ
meson in medium [28, 29]. In fact Jin et al find m⋆

ρ(ρ0)/mρ = 0.78 ± 0.08,
entirely consistent with (14).

4.4. Evidence from kaon-nuclear interactions

There is yet another source for the scaling relation (16) that comes from
the fluctuation of the BR scaling chiral Lagrangian into the strangeness
flavor direction. As discussed in [27, 30], the BR scaling Lagrangian at tree
order predicts an attractive potential in the K−-nuclear interaction which
at nuclear matter density comes to ∼ 190 MeV. This attraction has been
seen in kaonic atom experiments. The recent analysis by Friedman, Gal and
Mares [31] gives the attraction of 185 ± 15 MeV. This again supports the
tree order calculation with BR scaling fluctuating around the matter ground
state. As discussed in [32], the large attraction described in BR scaling can
be attributed to the higher chiral order effects that are not taken into account
in the conventional treatments.

2 The quantity ρ that figures in the parameters of the Lagrangian is not a number but
an operator whose mean field value is the matter density. How it is to be treated
is a bit subtle. Naive interpretation of the density dependence of the mass leads to
misleading results. See [26] for details.

3 Note that this scalar field is a chiral singlet — and not the fourth component of the
chiral four-vector of the linear sigma model — to be consistent with chiral symmetry.
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5. Dense matter

5.1. Dileptons in heavy-ion collisions

Fluctuating into non-strange directions, the effective Lagrangian with
BR scaling has been successfully applied to the dilepton data of the CERES
collaboration [12] by Li, Ko and Brown [11]. The heavy-ion process involves
densities ρ ∼ 3ρ0, so a considerable extrapolation from nuclear matter is
required. In an extremely simplified form, the masses of all hadrons drop
linearly and become negligibly small at about 3ρ0. The picture is then
that near the chiral phase transition the relevant degrees of freedom are
the constituent quarks, that is, weakly interacting quasiquarks. Since as
argued above, hadrons with BR scaling are quasiparticles at the density up
to about ρ0, as density increases beyond ρ0, the effective degrees of freedom
must crossover (possibly smoothly) in a manner described by the NJL model
from the hadron quasiparticles to the quasiquarks forming the light-quark
baryons and mesons up to the chiral phase transition. This was the argument
given in [30]. How this picture emerges in understanding the CERES data
will be discussed by Gerry Brown in the following talk.

5.2. Kaon condensation in compact stars

Fluctuated into the strangeness flavor direction, the dropping K− mass
discussed above leads in neutron star matter to condensation of kaons at
about ∼ 3ρ0 with important consequences on the structure of compact
stars [33]. Again the picture that emerges is that of the constituent quark.

6. Conclusions

In this talk, I argued that both dilute and dense hadronic systems can
be described in effective field theories. For the former, the theory is defined
in the matter-free vacuum and two-nucleon systems, bound and elastic and
inelastic scattering at low energy, are accurately determined parameter-free
when calculated up to NLO in the chiral counting. For the latter, the “deci-
mation” at the Fermi-sea scale is introduced and BR scaling is identified as
a means to map the mean-field chiral Lagrangian theory to Landau Fermi-
liquid fixed-point theory. The BR scaling for the nucleon is checked with the
electroweak responses of heavy nuclei and that for mesons is checked with
the fluctuations built on top of the “vacuum” characterized by the density of
the matter. The BR scaling parameter Φ is shown to be related to the Lan-
dau interaction parameter Fω

1 coming from massive isoscalar vector degrees
of freedom that underlie short-range interactions between nucleons. This
implies that if the BR scaling is indeed connected to the vacuum structure
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of QCD as argued here, the change of the QCD vacuum should be under-

standable in terms of interactions between hadrons, at least up to a certain

density below that of the chiral phase transition. This may be considered as
a sort of Cheshire-Cat phenomenon [9]. It would be nice to quantify this
statement.

Extrapolated into higher density regime in the most straightforward way,
the theory can be applied to dense matter in heavy-ion collisions and in com-
pact stars. As an effective theory, it is a mean-field theory. Going beyond the
mean field approximation and calculating higher-order corrections remain to
be formulated in a systematic way.

Finally it is argued that as density is raised above normal matter den-
sity, the correct degree of freedom should be the quasiquark and hence there
must be a change-over from hadronic Fermi liquid to quark Fermi liquid of
quasiquarks. Various phase transitions such as the chiral or color supercon-
ductivity could be addressed from the quark Fermi-liquid structure.

It is a pleasure to dedicate this paper to Josef Speth on the occasion
of his 60th birthday. Josef and I had on various occasions — and long
before Landau–Migdal theory was widely recognized by the nuclear physics
community — exchanged our views on Fermi-liquid structure of nuclei and
nuclear matter and the present paper is an unexpected and intriguing spin-
off of the ideas in a modern context. This paper is based on work done in
collaboration with Gerry Brown, Bengt Friman, Kuniharu Kubodera, Dong-
Pil Min, Tae-Sun Park and Chaejun Song whom I would like to thank for
discussions.
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