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It is discussed how chiral symmetry restoration manifests itself through
mixing of vector and axial-vector correlators. The vector correlator is
directly accessible in relativistic heavy-ion collisions. Within models of
the vector correlator its implications for low-mass dilepton spectra are re-
viewed.
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1. Introduction

The goal of ultra-relativistic heavy-ion collisions is to create new states
of hadronic matter that are believed to have existed until a few tens of mi-
croseconds after the ‘big bang’. These efforts were largely stimulated by
lattice QCD predictions that hadronic matter at high energy density un-
dergoes a phase transition to a plasma of deconfined quarks and gluons. At
present the lattice calculations with realistic light quark masses yield a tran-
sition temperature Tc = 150± 20 MeV [1] at which there is a rapid increase
of the thermodynamic quantities such as energy- and entropy-density. The
transition is accompanied by a restoration of chiral symmetry, signaled by
a sharp decrease of the chiral condensate, 〈q̄q〉T , near Tc.

In the following, we shall concentrate on the chiral symmetry aspects
of the phase transition and potential signals in heavy-ion collisions. In the
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physical vacuum chiral symmetry is spontaneously broken. For the light
meson spectrum this manifests itself in two ways: (i) the appearance of
(nearly) massless Goldstone bosons (pion, kaon, eta) which interact weakly
at low energies, and (ii) the absence of parity doublets, i.e. the splitting of
scalar- and pseudoscalar, as well as vector and axial-vector mesons. For the
following discussion property (ii) will be most important. Given the vector
and axial-vector currents (Nf = 2),

V a
µ = q̄γµ(τa/2)q , Aa

µ = q̄γµγ5(τ
a/2)q , (1)

the vacuum properties of the vector and axial-vector mesons are encoded in
the corresponding correlators

〈V a
µ (x)V b

ν (0)〉 = −
δab

π

∫

d4q θ(q0)eiqx ImΠV
µν(q) ,

〈Aa
µ(x)Ab

ν(0)〉 = −
δab

π

∫

d4q θ(q0) eiqx

(

ImΠA
µν(q) − F 2

π δ(q2) qµqν

)

.(2)

Note the explicit contribution of the pion to the axial-vector correlator
through the pion weak decay constant, Fπ. Current conservation implies
a four-dimensionally transverse tensor structure

ΠV,A
µν (q) =

(

gµν −
qµqν

q2

)

ΠV,A(s) , ΠV,A(s) =
1

3
gµνΠV,A

µν (q) , (3)

where s = q2. The isovector part of the spectral function ImΠV is observed
from the hadronic part of the e+ + e− → even π which has a sharp res-
onance corresponding to the ρ-meson (770 MeV). On the other hand, the
isovector part of ImΠA can be observed from the hadronic part of the decay
τ → odd π. This part has a broad a1 peak (1260 MeV). The two spectral
functions are clearly different which is one of the experimental signatures
that chiral symmetry is spontaneously broken. The degree of symmetry
breaking follows from the Weinberg sum rule [2]

1

π

∫

ds

s

(

ImΠV (s) − ImΠA(s)

)

= F 2
π . (4)

Physically it states that the difference in vector and axial-vector polarizabil-
ities ΠV

µµ(0) − ΠA
µµ(0) of the QCD vacuum is given by the order parameter

of spontaneous symmetry breaking. A second sum rule can be derived

1

π

∫

ds

(

ImΠV (s) − ImΠA(s)

)

= 0 , (5)

which implies that the ‘energy weighted’ sum rules (EWSR) of the two
spectral functions are identical. This is a well-known consequence of the
conservation of vector and axial-vector currents in the chiral limit.
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2. How to detect symmetry restoration?

In the experimental study of chiral restoration in heavy-ion collisions the
change in the quark condensate 〈q̄q〉µ,T is not directly measurable. However,
it follows from chiral symmetry alone that, at the phase boundary, the scalar
and pseudo-scalar correlators as well as the vector and axial-vector correla-
tors must become identical. In principle, the observation of parity mixing
can thus serve as a unique signal for chiral restoration. Since the vector and
axial-vector correlators in the vacuum are largely saturated by narrow reso-
nances, the objective is then to study the spectral changes of these ‘collective
modes’ as a function of µ and T .

The vector correlator is directly accessible in heavy-ion collisions since it
couples to photons or dileptons both of which undergo negligible final-state
interaction. Concerning the spectral properties there are, in principle, two
possibilities: (1) the vector modes could become ‘soft’ at the phase bound-
ary giving rise to ‘dropping masses’. This is the hypothesis of ‘Brown–Rho
scaling’ [3] and would be a natural consequence of a direct relationship be-
tween masses and the chiral condensate, as found in the vacuum. It explains
qualitatively the rapid increase in entropy density across the phase bound-
ary, as is seen in lattice QCD [4]; (2) the vector mesons remain massive,
becoming degenerate with their axial partners. To elucidate this possibility
further the properties of the in-medium correlators need to be discussed in
more detail.

3. In-medium vector and axial-vector correlators

In equilibrium, the finite-temperature (chemical potential) correlation
functions are evaluated in the grand canonical ensemble,

Π̃V
µν(q0, ~q) = iδab

∫

d4x eiq·x ρi 〈i|V
a
µ (x)V b

ν (0)|i〉 , (6)

and a similar expression for Π̃A
µν(q0, ~q) (ρi is the usual density matrix). Spec-

ification of a matter rest frame implies that Lorentz invariance is broken.

Thus the momentum-space correlators Π̃V,A
µν will depend on energy and

three-momentum separately and not on just their invariant q. Also, the
number of Lorentz tensors is larger. Introducing longitudinal and transverse

projection tensors PL,T
µν one has

Π̃V,A
µν (q0, ~q) = Π̃V,A

L PL
µν + Π̃V,A

T P T
µν , (7)

which in vacuum reduces to Eq. (3) with ΠV,A ≡ ΠV,A
L = ΠV,A

T The pion,
being a massless Goldstone boson in the chiral limit, is special. It only con-
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tributes to the longitudinal axial correlator and, without loss of generality,
can be subsumed in the axial-vector correlator.

The in-medium extensions of the Weinberg-sum rules (for µ = 0) have
been derived in [5]. They read

∞
∫

0

dq0 q0

q2
0
− ~q2

(

ImΠ̃V
L (q0, ~q) − ImΠ̃A

L (q0, ~q)

)

= 0 (8)

and
∞
∫

0

dq0 q0

(

ImΠ̃V
L,T (q0, ~q) − ImΠ̃A

L,T (q0, ~q)

)

= 0 (9)

and hold at each value of the three-momentum ~q. Note that the polarizabil-
ity sum rule (8) only involves the longitudinal part of the spectral functions
while the EWSR (9) holds for both parts separately. As usual in many-body
physics, sum rules put important constraints on models of the spectral func-
tions and can be used to gain insight into the role of in-medium effects. This
can be illustrated most stringently in the case of vanishing baryo-chemical
potential. In the chiral limit, the pion is massless below the critical tem-
perature for chiral symmetry restoration and, in the low temperature limit,
the heat bath is dominated by pions. It can be proven that in this limit the
masses of the vector and axial-vector mesons do not change to order T 2 [6].
To this order there are only changes in the couplings of the currents and the
finite-temperature correlators are described by T -dependent mixing of the
zero-temperature correlators

Π̃V
µν(q0, ~q) = (1 − ε) ΠV

µν(q) + ε ΠA
µν(q) ,

Π̃A
µν(q0, ~q) = (1 − ε) ΠA

µν(q) + ε ΠV
µν(q) . (10)

To order T 2, ε ≡ T 2/6F 2
π , and therefore the temperature dependence of the

pion decay constant is F 2
π (T ) = (1 − ε)F 2

π , consistent with the results from
chiral perturbation theory [7]. As is easily verified, the sum rules (8) and
(9) are fulfilled. As the mixing becomes maximal, ε = 1/2, chiral symmetry
is restored. The in-medium sum rules can be used to gain further insight
into the behavior of the in-medium correlators. Restricting the discussion
to vanishing three-momentum for simplicity and resonance saturation in the
vacuum through the current-field identities

V a
µ =

m2
ρ

gρ
ρa

µ , Aa
µ =

m2
a1

ga1

aa
µ + pion , (11)
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we obtain for the vector spectral density in the ρ-meson channel

πImΠ̃ρ
L(q0) =

m4
ρ

g2
ρ

Im
1

q2
0
− m2

ρ − Σρ(q0)
, (12)

where Σρ denotes the ρ-meson selfenergy at finite temperature. A narrow

width approximation, ImΣρ ≪ m∗

ρ
2, yields

πImΠ̃ρ
L(q0) =

m4
ρ

g2
ρ

δ(q2
0 − m2

ρ − ReΣρ(q0)) . (13)

The pole mass is determined from m∗

ρ
2 = m2

ρ + ReΣρ(m
∗

ρ) and the spectral
density can be written as

πImΠ̃ρ
L(q0) = Zρ

m4
ρ

g2
ρ

δ(q2
0 − m∗

ρ
2) (14)

with a temperature-dependent residue. Similarly, for the axial-vector spec-
tral density,

π ImΠ̃a1

L (q0) = Za1

m4
a1

g2
a1

δ(q2
0 − m∗

a1

2) + Zπ F 2
π q2

0 δ(q2
0) . (15)

Inserting these spectral densities into the sum rules (8) and (9) implies that
Zρ = Za1

and

Zπ = 2Zρ

(

m2
ρ

m∗

ρ
2
−

m2
ρ

m∗

a1

2

)

. (16)

From the fact that the vector- and axial-vector spectral functions have to
become identical at chiral restoration one expects in the narrow width ap-
proximation that m∗

a1
→ m∗

ρ as the phase transition is approached. As a
result the residue at the pion pole, Zπ, has to vanish. Whether both m∗

ρ and
m∗

a1
vanish at Tc or remain finite cannot be decided from sum rule arguments

alone. To answer this question dynamical models have to be employed.

4. Hadronic models for the vector correlator

In modeling the in-medium vector and axial-vector correlators one should
realize that, at SpS energies, the phase space in the final state is dominated
by mesons (mostly pions) with a meson/baryon ratio of 5–7 [8]. An obvious
starting point is therefore a pure pion gas. For the ρ-meson which, in the
Vector-Dominance Model (VDM), couples predominantly to two-pion states
this implies a modification of the pion loop through the heat bath as well as



2328 J. Wambach, R. Rapp

contributions from direct ρ−π scattering. The resulting thermal broadening
has been calculated in various frameworks [9] and found to be rather small.
A model-independent approach has been put forward by [10] which relies
on a chiral reduction formalism in the virial expansion. Being an expansion
in temperature, the in-medium vector correlator (6) can then be related
to the vacuum vector- and axial-vector correlators in much the same way
as discussed in the previous section. The vacuum spectral information is
deduced from experiment.

In spite of the scarcity of baryons in the hot hadron gas, they have a sig-
nificant impact on the spectral properties of vector mesons, largely because
of strong meson-baryon coupling. When baryons are involved the mixing
of vector- and axial-vector correlators is much more complicated than at
µ = 0 and it has only started to be addressed recently [11]. Putting these
difficulties aside, several approaches have been put forward to determine the
in-medium vector correlator. In analogy to the virial expansion at finite tem-
perature an obvious starting point is a combined low T , small µ expansion
of (6), resulting in the leading-order corrections to the vacuum correlators in
both pion- and nucleon number density, nπ and nN [10, 12]. To leading or-
der in nN the nucleon Compton amplitude enters which is constrained from
γN photoabsorption data and the nucleon polarizabilities. In [12] the nu-
cleon Compton tensor is evaluated in the VDM combined with chiral SU(3)
dynamics, based on an effective meson-baryon Lagrangian. The calculation
reveals that the ρ-meson suffers substantial broadening, as density increases.
The position of the ‘pole mass’ is hardly affected, however.

A second approach for the in-medium spectral properties of the ρ-meson
starts from the well-known observation that pion propagation in the nu-
cleus is strongly modified. A wealth of elastic π-nucleus scattering data has
provided detailed understanding of the relevant physical mechanisms [13].
The dominant contributions originate from P -wave πN scattering through
N -hole and ∆-hole loops, giving rise to a momentum-softening of the pion
dispersion relation. In the VDM it is therefore natural to account for this
effect by replacing the vacuum two-pion loop with in-medium pions [14].
Gauge invariance is ensured by including appropriate vertex corrections. To
lowest order in nucleon density this approach represents a pion cloud model
for the nucleon Compton amplitude which largely coincides with that of [10]
and [12]. In addition to leading-order contributions in nN there naturally
emerge higher orders in density, most notably n2

N terms. These correspond
to two-nucleon processes of meson-exchange character and NN - and N∆-
bremsstrahlung contributions. Besides the medium modifications caused by
dressing the intermediate 2-pion states, direct interactions of the ρ-meson
with surrounding nucleons in the gas have to be considered. Indeed, there
are several well-established resonances in the particle data table [15] which
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strongly couple to the ρN decay channel, e.g. the N(1720) and the ∆(1905).
This led to the suggestion [16] to consider P -wave particle-hole excitations of
the type ρN(1720)N−1 and ρ∆(1905)N−1. In a more complete description
other resonances with appreciable ρN widths have been included [17, 18],
most notably S-wave excitations into N(1520), ∆(1700), etc.. The most
simple version of the VDM tends to overestimate the B∗ → Nγ branch-
ing fractions when using the hadronic coupling constants deduced from the
B∗ → Nρ partial widths. This is corrected for by employing an improved
version of the VDM [19], which allows to adjust the B∗Nγ coupling inde-
pendently.

Combining the effects of pionic modifications and resonant ρN scatter-
ing, the resulting ρ-meson spectral functions ImΠ̃ρ = 1/3(ImΠ̃ρ

L + 2ImΠ̃ρ
T )

are displayed in Fig. 1. One observes significant broadening especially at
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Fig. 1. ρ-meson spectral function versus invariant mass M and 3-momentum q in

vacuum (left panel) and in normal nuclear matter (right panel).

small ~q with a low-mass shoulder which originates from intermediate ∆N−1π
states and resonant N(1520)N−1 excitations. As ~q increases the shoulder
moves towards the M = 0 line which can be understood from simple kine-
matics.

An important constraint for models of in-medium ρ-meson propagation
is photoabsorption on nucleons and nuclei, for which a wealth of data ex-
ist over a wide range of energies. Real photons correspond to the M = 0
line in the right panel of Fig. 1. Within the model discussed above, the
total photoabsorption cross section per nucleon can be calculated straight-
forwardly [18]. Taking the low-density limit, nN → 0, only terms linear in
density contribute, representing the absorption process on a single nucleon.
Adjusting the model parameters to optimally reproduce the γp data yields
results displayed in the left panel of Fig. 2. Photoabsorption on nuclei can
be reproduced with similar quality (right panel of Fig. 2). It is noteworthy
that, in the nucleus, strength below mπ is obtained which originates from
two-nucleon processes via meson-exchange currents and is nothing but the
‘quasi-deuteron tail’ of the giant dipole resonance.
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Fig. 2. The photo absorption spectrum on the proton [20] (left panel) and on

nuclei [21] (right panel). The solid lines are the full results in the low-density limit

(left panel) and for ρN = 0.8ρ0 (right panel), and short-dashed lines indicate the

non-resonant background contributions; the results are taken from [22].

Another model constraint can be obtained from the analysis of πN →
ρN production [23] which is in fact dominated by pion cloud contributions
(rather than B∗ resonances). This imposes stringent constraints on the
hadronic form factor at the πNN vertex (requiring ΛπNN ≃ 300−400 MeV),
which are included in the results shown in Figs. 1-3 [22, 24].

5. Comparison with dilepton data

Including the above mentioned hadronic model constraints gives confi-
dence in extrapolations to the time-like region of dilepton production. For
ππ-annihilation/ρ-meson decays the in-medium dilepton rate is obtained as

dNπ+π−
→l+l−

d4xd4q
= −

α2

3π3

fρ(q0;T )

M2
gµν ImΠ̃ρ

µν(q0, ~q) . (17)

In the model of [22, 25] most of the important processes discussed above
have been included such that the ρ-meson propagator contains aside from
the nucleonic contributions also some parts from the pion/kaon gas.

To compare the theoretical rates with data, the space-time history of
the heavy-ion collision has to be specified. There are several possibilities
for modeling the collision. Within a simple ‘fireball’ model [25, 26] initial
conditions in temperature and hadron abundances are taken from transport
model calculations; assuming local thermal equilibrium as well as chemical
equilibrium, the space-time history is then determined by a simple cooling
curve, T (t), from some initial time, ti, up to the ‘freeze-out time’, tf . For SpS
energies such cooling curves are available from transport theory [27] and can
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be easily parameterized. The time evolution of the hadron abundances is de-
termined by chemical equilibrium and agrees well with the transport model
results. The observed spectrum is then obtained by integrating the ‘local
rate’ (17) in time, accounting for the detector acceptance in addition, cp.
Fig. 3. When including the in-medium effects due to hadronic rescattering as
discussed above, reasonable agreement is obtained (full curves) with both the
invariant mass (left panel) and transverse momentum spectra (right panel).
Note that the major part of the enhancement for 0.2 GeV<Mee<0.6 GeV is
correctly ascribed to rather small pair momenta qt≤0.7 GeV. This might in
fact resolve the question why the µ+µ− spectra measured by the NA50 col-
laboration show a much less pronounced excess at low Mµµ: their transverse
momentum cut of pt>1 GeV will eliminate most of enhancement generated
within the model.
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Fig. 3. Dilepton invariant mass (left panel) and transverse momentum (right panel)

spectra in Pb+Au collisions at CERN-SpS energies [28]. The dashed-dotted lines

arise from hadron decays after freezeout [27,28]; adding the contribution from π+π−

annihilation in the hadronic fireball, one obtains the dashed lines (when using the

free ρ propagator) or the full lines (when using the in-medium ρ propagator); the

results are taken from [22].

The fireball model is rather crude and does not incorporate detailed flow
dynamics. A more sophisticated description is provided by hydrodynamical
simulations. In this case the ‘local rates’ (17) refer to a given fluid cell and
can be directly implemented. So far, however, no results are available.

A third way is to supply transport calculations with rates obtained from
in-medium vector-meson propagation. For the ρ-meson these have been
implemented in simulations using the HSD model for the transport [29].
The results are very similar to the ones of Fig. 3 obtained in the fireball
model.
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6. Summary

Recent theoretical efforts in understanding the nature of chiral symme-
try restoration at finite temperature and baryochemical potential and their
implications for low-mass dilepton production in URHIC’s have been dis-
cussed. Special emphasis has been put on the in-medium Weinberg sum
rules and their implications for the mixing of vector and axial-vector corre-
lators. A unique signal for chiral symmetry restoration in URHIC’s would
be the observation of such a mixing. It strictly follows from chiral symme-
try but is difficult to detect. Only the vector correlator is accessible via
electromagnetic probes.

Meanwhile, the development of hadronic models for in-medium prop-
erties of vector mesons has advanced to a more quantitative level, in par-
ticular owing to phenomenological constraints inferred e.g. from photoab-
sorption data. Thus, trustworthy calculations for dilepton production in
hot/dense matter can be performed. While some approaches inherently in-
volve constraints from chiral symmetry [10, 12], others lack an obvious con-
nection to chiral symmetry emphasizing, however, input from hadronic phe-
nomenology [18, 25, 26]. When supplemented by models for the space-time
history of the heavy-ion collision dynamics, reasonable theoretical account
for the experimentally observed low-mass dilepton enhancement seems to
emerge [22, 25, 29]. Further calculations addressing more exclusive observ-
ables as e.g. the recently measured transverse momentum spectra [28], where
the major part of the low-mass enhancement has been identified at low pair-
pt, also seem to be in line [22] with the data.
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