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Starting from a precise two-nucleon potential, I show how to use the
method of unitary transformations to construct an effective potential that
involves only momenta less than a given maximal value. I describe this
method for an S-wave potential of the Malfliet–Tjon type. It is demon-
strated that the bound and scattering state spectrum calculated within the
effective theory agrees exactly with the one based on the original poten-
tial. Such a truely low momentum effective theory might pave the way
for a consistent construction of effective chiral few-nucleon forces and for a
systematic treatment of relativistic effects in few-body systems.

PACS numbers: 12.39.Pn, 12.39.Fe

1. Introduction and motivation

Chiral perturbation theory for two and more nucleons became a subject
of a great research interest in the past few years, see e.g. the pioneering
work in [1,2]. One hopes to be able to clarify the structure of nuclear forces
in this way. However, only the low-momentum matrix elements of nuclear
forces may be systematically treated in this approach since it is based on a
consistent power counting of small momenta and pion masses compared to
the typical hadronic scale of Λhad ≃ 1 GeV (for some recent work along these
lines see e.g. Refs. [3,4]). A natural problem arises due to the appearance of
shallow nuclear bound states indicating a breakdown of perturbation theory.
Furthermore, solving the Lippmann–Schwinger equation for constructing the
deuteron necessarily involves momenta |~p | > Λhad. For such momenta, the
chiral effective potential constructed according to the conventional power
counting rules is no longer applicable. This is witnessed by the fact that in
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the calculations for the two-nucleon system in [2], an additional ad hoc cut-
off to tame the high-momentum components had to be introduced. To be
more precise, this cut-off function is not commensurate with the underlying
chiral power counting since it introduces an infinite string of local operators
with increasing dimension. One might therefore question the validity or
usefulness of such an approach alltogether. For recent discussions of this
subject see [5] and a different power counting scheme has been presented
in [6]. A similar problem arises in standard few- and many-body calculations
based on realistic nucleon–nucleon (NN) forces. The potentials, if derived
from meson exchange diagrams, are generally based on a non-relativistic
expansion in powers of momenta over the nucleon mass and are then used in
various types of bound state equations. These usually involve integrations
over a much larger range of momenta as used in the construction of the NN

potentials. The same is of course also true for the various phenomenological
NN forces, which are chosen more or less ad hoc (with the exception of the
pion tail). This affects in a non-trivial way the calculation of observables,
such as masses, levels or electromagnetic response functions. For a recent
discussion, see e.g. Ref. [7]. In this general context the question of the
existence and the properties of a low-momentum effective theory for nucleons
are thus of great importance. I show here that it is indeed possible to
construct an effective two-nucleon potential from a given realistic potential
which involves only low momenta, i.e. momenta below a chosen momentum
cut-off, but which gives exactly the same results for bound and scattering
states [8]. The cut-off scale introduced in our approach should be considered
a physical quantity since it defines the Hilbert space in which the theory
operates. This is different from the cut-off in a form factor or vertex function.
It is important to stress that our approach differs from the treatment of the
Schrödinger equation in an effective field theory framework proposed by
Lepage [9]. In his approach, an effective field theory for nucleons only is
constructed for very low momenta and eventually pions are added. While
that is certainly a valid framework, we intend to stay closer to the already
existing nuclear physics knowledge in that our approach will eventually allow
to match the low-momentum theory in a well-defined way to the highly
successful meson-exchange pictures of the nucleon–nucleon force. The results
presented here should therefore be considered as a first step in a bigger
program. Finally, I remark that while it seems to be known that such
an exact momentum space projection can be done, to my knowledge this
program has never been carried out before.
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2. Formalism

To be specific, consider a momentum space Hamiltonian for the two-
nucleon system of the form

H(~p, ~p ′) = H0(~p ) δ(~p − ~p ′) + V(~p, ~p ′) , (1)

where H0 stands for the kinetic energy and the explicit form of the NN

potential will be specified later. The aim is to decouple the low and high
momentum components of this two-nucleon potential using the method of
unitary transformation [10, 11]. For achieving that, one introduces the pro-
jection operators

η =

∫

d3p |~p 〉〈~p | , |~p | ≤ Λ ; λ =

∫

d3p |~p 〉〈~p | , |~p | > Λ , (2)

where Λ is a momentum cut-off whose value will be specified later and η

(λ) is a projection operator onto low (high) momentum states with η2 = η,
λ2 = λ, ηλ = λη = 0 and λ + η = 1. To be precise, the separation into low
and high momentum components is to be understood in a limiting sense, we
always consider limε→0(Λ− ε). In this basis, the Schrödinger equation takes
the form

(

ηHη ηHλ

λHη λHλ

)(

ηΨ

λΨ

)

= E

(

ηΨ

λΨ

)

. (3)

We now perform a unitary transformation of the type

H → H′ = U †HU , (4)

so that ηH′λ = λH′η = 0. The corresponding unitary operator U is
parametrized in terms of an operator A, following Okubo [10]:

U =

(

(1 + A†A)−1/2 −A†(1 + AA†)−1/2

A(1 + A†A)−1/2 (1 + AA†)−1/2

)

(5)

and A satisfies the condition A = λAη. The requirement of decoupling the
two spaces leads to the following nonlinear integral equation

λ (H− [A, H] − AHA) η = 0 (6)

for the operator A. In the context of the nuclear many-body theory one
often introduces a mean field single particle basis, which defines a complete
set of N -particle states. A low-energy subgroup of states form a model
space and one is interested in effective interactions acting in that model
space such that the same low energy spectrum results as for the underlying
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N -body Hamiltonian. A way to arrive at that effective interaction is to
decouple by a suitable transformation the two spaces (model space and the
rest space), which leads to a decoupling equation of exactly the form Eq. (6).
In that context it is often reformulated into a linear form on a two-body level
using the exactly known interacting two-body states (some references are e.g.

[12,13]). This is indeed a feasible way to proceed also in our context. Here,
this alternative way will not be discussed any further but rather we solve
directly the nonlinear equation (6). If we denote by ~q (~p ) a momentum from
the η (λ)-space, Eq. (6) takes the form1

V(~p, ~q ) −

∫

d3q′ A(~p, ~q ′)V(~q ′, ~q ) +

∫

d3p′ V(~p, ~p ′)A(~p ′, ~q )

−

∫

d3q′ d3p′ A(~p, ~q ′)V(~q ′, ~p ′)A(~p ′, ~q ) = (E~q − E~p)A(~p, ~q ) . (7)

The quantities E~q ,~p are the kinetic energies related to the corresponding
three-momenta. This equation can only be solved numerically. This is most
easily done by iteration starting with

A =
V(~p, ~q )

E~q − E~p
. (8)

After four iterations, we then perform an average over the values of the oper-
ator A with different weight factors. This allows to speed up the convergence
considerably (details on this procedure will be published elsewhere). We also
provide a regularization scheme for the singularities of the operator A, which
arise by solving this equation, i.e. at the cut-off momentum (as becomes ob-
vious from Eq. (8)). To be specific, we redefine the original potential by
multiplying it with some smooth functions f(~p ) and f(~q ) which are zero in
some neighborhood of the point |~p | = Λ and one elsewhere,

V (~p , ~q ) → f(~p )V (~p , ~q ) f(~q ) , (9)

symbolically shown in Fig. 1. The precise form of this procedure is of no
interest for the following and will thus not be discussed in detail here. We
only add that the regularization is chosen mild enough that it has no effect
on the observables, as will be illustrated later on for a specific example.
More formally, for a typical S-matrix element this equivalence amounts to

〈~p1 |S |~p2 〉 −→ 〈~p1 |S(α) |~p2 〉
α→0
−→ 〈~p1 |S |~p2 〉 , (10)

with α some typical range in momentum space, cf. Fig. 1.

1 Our notation is such that Q(~p, ~q ) stands for the corresponding matrix element
〈~p |Q|~q 〉 for any operator Q.
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Fig. 1. Symbolic form of the function regularizing the singularity at |~p | = |~q | = Λ.

In the real case, the edges are not sharp.

3. Results for a semi-realistic potential

We now restrict ourselves to the NN S-waves. To be specific, consider
a momentum space Malfliet–Tjon [14] potential with an attractive and a
repulsive part

VMT(~q1, ~q2) =
1

2π2

(

VR

t + µ2
R

−
VA

t + µ2
A

)

, (11)

with t = (~q1 − ~q2)
2. We choose the parameters as given in [15], VR = 7.29,

VA = 3.18, µR = 614 MeV and µA = 306 MeV. From here on, we only
consider the S-wave part of this potential which can be obtained analyti-
cally. Although this potential is quite simple, it captures essential features
of the NN interaction, in particular, it supports exactly one bound state at
E = −2.23 MeV. Since we are interested in an effective theory with small
momenta only, we set the cut-off Λ = 400 MeV (or smaller). One now
compares the original potential with the effective one. The latter is defined
via

Veff = H′ −H0 . (12)

In the range of the small momenta, the potentials are very similar. However,
one finds significant differences between the effective and the original poten-
tial when the cut-off, above which the nucleonic momenta are integrated
out, is chosen very small, Λ ≤ 200 MeV. This is shown in Fig. 2.

We now consider observables. Phase shifts can be derived from the S-
matrix, or equivalently, from a K-matrix approach. Symbolically, the rela-
tion between the S- and the K-matrix can be expressed as

S =
1 − iπqK

1 + iπqK
, (13)

with q the on-shell relative momentum of the two nucleons corresponding to
the laboratory energy being considered. We work in the framework of the
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Fig. 2. Effective two-nucleon potential (green hatched area with solid lines) in

comparison with the original potential, Eq. (11) (blue hatched area with dashed

lines), for momenta less than 200 MeV.

latter because the K-matrix is purely real. This is, however, just a matter
of convenience. The low-energy phase shifts and the bound-state energy
are reproduced to a very high precision with the resulting effective poten-
tial acting only in the low momentum components. This is shown for the
S-wave phase in Fig. 3 for two values of the cut-off Λ = 200 and 400 MeV,
respectively.

The phase shifts from the original potential are exactly reproduced in
the approach based on the effective potential, as long as one stays below
the chosen cut-off. This is the reason why the solid and dashed lines in the
figure fall on top of each other. The Lippmann–Schwinger equation in the
effective approach involves by construction only momenta below the cut-off
and thus the bound state can be calculated completely consistently. We
find that the bound state energy is also exactly reproduced. Furthermore,
the deuteron state evaluated in the effective theory is of course unitarily
transformed. Matrix elements of an arbitrary operator O remain unchanged
under this unitary transformation,

〈ΦD|O|ΦD〉 = 〈Φ′
D|O′|Φ′

D〉 , (14)

with O′ = U †OU , |Φ′
D〉 = U †|ΦD〉 and ΦD(p) = 〈p|ΦD〉 denotes the deuteron

wave function in momentum space. For illustration, we compare in Fig. 4
the original and the unitarily transformed deuteron momentum space wave
functions for Λ = 200 MeV. Note that due to the regularization, the “spike”
close to the cut-off is infact a smooth function and does not introduce any
singular derivatives. For a larger cut-off value, say Λ = 400 MeV, the two
curves fall onto of each other apart from a small interval in the vicinity of
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Fig. 3. Phase shifts from the effective potential (solid lines) and the original po-

tential (dashed lines) as a function of the kinetic energy in the lab frame. Upper

(lower) panel: Λ = 400 (200) MeV.

Fig. 4. Deuteron wave function p ΦD(p) versus the momentum p from the effective

potential (solid line) and the original potential (dashed line) for Λ = 200 MeV.
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the cut-off. We thus do not show that case here. Note, however, that the un-
projected deuteron wave function is still not negligible at momenta of about
800 MeV. As an illustration, we consider the expectation value of the mod-
ulus of the momentum operator in the S-wave deuteron, 〈ΦD(p)|p̃|ΦD(p)〉,
with p̃ = |~p |. In the effective low momentum theory, the momentum oper-
ator becomes non-local. To be specific, I give the modulus of the effective
momentum operator (droppping all vector arrows),

peff(p1, p2 ) =

∫

dp′ p′
2
U †(p1, p

′ ) p′ U(p′, p2) . (15)

This non-locality can, of course, be handled without problems. The re-
sults for the modulus of ~p are listed in Table I for the two cut-off values
Λ = 200, 400MeV. Of course, for the full MT-potential we do not need the
regularization. However, to illustrate its influence, we have also performed a
calculation with a MT-potential subject to the same regularization as used
for the effective potential (labeled “regularized” in the table). For the lower
cut-off, the few permille deviation between the exact result and the one
based on the regularized potential is simply due to the fact that we did not
optimize the numerical solution of the integral equation Eq. (7) to deter-
mine the operator A. If needed, one can improve these numbers to agree to
arbitrary precision (which is not of relevance here). Any other operator can
be handled in a similar fashion, in particular also two-body operators like
they arise when one considers meson exchange currents.

TABLE I

Expectation value of |~p | in the S-wave deuteron based on the exact and the ef-

fective MT-potential. For the exact case, we show the results with and without

regularization at the singularity |~p | = Λ.

Λ = 200 MeV Λ = 400 MeV

Exact potential, not regularized 80.23 MeV 80.2308 MeV

Exact potential, regularized 79.90 MeV 80.2303 MeV

Effective potential, regularized 79.90 MeV 80.2304 MeV

4. Summary and outlook

I have shown how to construct an effective two-nucleon potential from
a realistic potential of the Malfliet–Tjon type which involves only low mo-
menta, |~p | < Λ. It was shown that this effective theory exactly reproduces
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the features of the original one below the cut-off Λ. For the case at hand, the
effective potential only has a shape that is significantly different from the
original one when the cut-off is chosen small enough, say below 300 MeV.
As already stressed in the introduction, this approach is now applied in few-
body physics and in the chiral perturbation theory description of the NN

interaction.

I am grateful to Evgenie Epelbaoum and Walter Glöckle for a pleasant
collaboration and for allowing me to present the material before publication.
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