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We derive the expressions of the (isovector) vector and axial current
from a chiral Lagrangian restricted to nucleons and pions. We show that
in the heat bath certain terms can induce a mixing of the axial current into
the vector one and vice versa. We generalize this concept to the case of
a dense baryonic medium. We study the subsequent modifications of the
axial nucleonic coupling constant and the pion decay one. They arise from
a two pion exchange current of a new type. We discuss the link to the
condensate evolution. The quenching of the axial coupling constant helps
explaining the observed one of the Gamow–Teller sum rule.

PACS numbers: 12.39.Fe, 24.85.+p, 23.40.Bw

1. Introduction

Chiral symmetry which is spontaneously broken in the QCD vacuum
is partly restored in a hot or dense medium.For independent particles the
evolution of the quark condensate with density or temperature is governed
by the sigma commutator of the particles present in the system with the
simple following expression:

〈qq(ρ)〉

〈qq(0)〉
= 1 −

∑

n

ρs
n Σn

f2
πm

2
π

, (1)

where the sum extends over the species present in the medium, ρs is their
scalar density and Σ their sigma commutator. In the heat bath pions play a
crucial role in the restoration process as they enter as the lightest particles
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created by the thermal fluctuations. In the nuclear medium the main in-
gredients are the nucleons, with some corrections from the exchanged pions.
At normal nuclear density the magnitude of the condensate has dropped by
about 1/3, a large restoration effect. Such a large amount of restoration
raises questions about possible manifestations directly linked to the sym-
metry. If there is no spontaneous violation of the symmetry, i.e., if it is
realized in the Wigner mode, the hadron masses vanish or there exist par-
ity doublets, each hadronic state being degenerate with its chiral partner.
It is therefore legitimate to believe that the large amount of restoration at
normal density manifests itself either by a decrease of the hadron masses, or
by effects linked to parity. The first question has been addressed [1]. On
the other hand the significance of chiral symmetry restoration in the parity
context was first established by Dey et al. [2] for the thermal case. They
showed that in a pion gas a mixing occurs between the vector and axial cor-
relators. It arises from the emission or absorption of s-wave thermal pions,
which changes the parity of the system. Working in the low temperature
and chiral limit they showed that the mixing is accompanied by a universal
quenching of the correlators, which, to first order in the temperature, equals
4/3 of the quenching of the quark condensate. These points were also made
by Steele et al. [3].

What I want to discuss in this talk is the implications, for the parity
problem, of chiral symmetry restoration in the nuclear medium, in a world
that we have for the moment restricted to nucleons and pions. In this case
the only transitions allowed in the nucleus are nuclear transitions or pion
production. This is a report of a work done in collaboration with Chanfray
and Delorme [4]. Our starting point is a chiral Lagrangian from which we
derive the explicit expressions of the axial and (isovector) vector currents. I
will show how the concept of parity mixing translates in the nuclear medium.
I will show that things are more subtle than in a heat bath but that the con-
sequences are pretty much the same in the nucleus, namely the nuclear pions
renormalize the coupling constants of the axial current and that the renor-
malizations can be expressed in terms of the pion scalar density. This last
quantity also enters in the quark condensate evolution. However the com-
plexity of the nuclear interactions bars a simple link between this evolution,
which is an average concept, and the renormalizations. For instance, for
the axial coupling constant gA the detailed spatial structure of the quark
condensate is needed.

I will start with the expressions of the axial and vector currents from the
chiral Lagrangian, then use these expressions to study the renormalization
of the nucleon axial coupling constant in the hot pion gas and in the nuclear
medium. I study the thermal case as an illustration of the method since the
results are already known.
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2. The Lagrangian and the currents

My starting point is the chiral Lagrangian in the form introduced by
Weinberg. I use the version of Lynn [5], which allows to obtain the nucleon
sigma commutator in the tree approximation. The Lagrangian writes:

L = −
1

2
m2

π

φ2

1 + φ2/4f2
π

+
1

2

∂µφ · ∂µφ

(1 + φ2/4f2
π)2

+2ΣNψψ
φ2/4f2

π

1 + φ2/4f2
π

+ ψ(iγµ∂
µ −M)ψ

−
1

4f2
π

ψγµ(τ × φ) · ∂µφψ

1 + φ2/4f2
π

+
gA

2fπ

ψγµγ5τ · ∂µφψ

1 + φ2/4f2
π

. (2)

I have to specify the quantity ΣN associated with the nucleon density
in Eq. (2). The free nucleon sigma commutator ΣN cannot be entirely
attributed to the pion cloud. We define ΣN to be the difference between the
total and pionic contributions:

ΣN = ΣN +
1

2
m2

π

∫

dx〈N |φ2(x)|N〉. (3)

For instance in a description of the nucleon in terms of valence quarks
and pions, the pionic contribution is approximately 1/2 to 2/3 of the total
value [6, 7].

From the Lagrangian of Eq. (2) we derive the expressions of the axial
and isovector vector currents:

Aµ = fπ
∂µφ

1 + φ2/4f2
π

−
1

2fπ

[(φ×∂µφ) × φ]

(1 + φ2/4f2
π)2

+
gA

2
ψγµγ5τψ +

gA

4f2
π

ψγµγ5[(τ × φ) × φ]ψ

1 + φ2/4f2
π

−
1

2fπ

ψγµ(τ × φ)ψ

1 + φ2/4f2
π

, (4)

Vµ =
(φ×∂µφ)

(1 + φ2/4f2
π)2

+
1

2
ψγµτψ +

1

4f2
π

ψγµ[(τ × φ) × φ]ψ

1 + φ2/4f2
π

−
gA

2fπ

ψγµγ5(τ × φ)ψ

1 + φ2/4f2
π

. (5)

With this expression the conservation of the vector current is fulfilled.
These expressions are lengthy but some comments will help clarifying them.
Let us first discuss the free case. We can recognise in some of the terms the
usual expressions for the vector or axial current coupled to a free nucleon
or pion. In addition the axial current can create one or more pions, either
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in free space (first terms of Eq. (4)), or when it acts on the nucleon via a
term (last one of Eq. (4)) which is the equivalent for the axial current of the
Weinberg–Tomozawa term of π-N scattering. Similarly the vector current
acting on the nucleon can create one (or more) pion via the Kroll–Ruderman
term, i.e. the contact piece of photoproduction (last term of Eq. (5)).

Let us now turn to the case of a hadronic medium. The expressions (4)
and (5) illustrate the way in which the axial and vector current mixing
occurs. Indeed, in the heat bath any of the pions can be a thermal one. As
an example, consider the Kroll–Ruderman term of the vector current. The
creation or annihilation of a thermal pion of momentum q in this term takes
care of the pion field, leaving a factor e±iqx and we are left with a current
of opposite parity, to be taken at the momentum transfer k ± q where k is
the photon momentum. Similarly the pion production or annihilation by
the Weinberg term of the axial current introduces the vector current nuclear
matrix element. Notice in expressions (4) and (5) that the Kroll–Ruderman
term itself can be obtained from the fourth term of the axial current by
suppression of one of the pion fields (representing creation or annihilation
of a thermal pion). Thus the three terms containing gA in Eqs (4) and
(5) are linked together by suppression or addition of one pion field. The
same is true for the three purely pionic terms and for the three terms in
γµ as well. Thus a grouping three by three of the various terms naturally
emerges from our expressions. In the nuclear medium the virtual pions can

Fig. 1. Illustration of a mixing effect in the vector correlator (a) in the heat bath

(denoted by a cross), (b) equivalent diagram in the nucleus with its translation (c)

in many-body diagrams.

be seen as a pion bath and similar considerations about the mixing might
apply. However the pions do not come from an external reservoir but fully
belong to the nucleus. Strictly speaking there is no mixing. However the
mixing terms of the currents can pick a pion from the cloud of a nucleon
introducing a similarity with the heat bath as displayed in Fig. 1 in the case
of the Kroll–Ruderman term. The corresponding process is the excitation of
high lying nuclear states (2p–2h). In the case of the third isospin component
of the current, it is part quasi-deuteron photoabsorption cross-section which
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is well known. This approach puts these effects, where the mixing terms
of the currents pick a pion from the cloud, in a perspective linked to chiral
symmetry. This has the merit that the concept of nuclear renormalization
naturally follows. Indeed the mixing also means a renormalization of certain
coupling constants, such as the axial one, that I now discuss.

3. The axial coupling constant

I start by the case of the heat bath. Although this case has been studied
previously by Eletsky and Kogan [9] (with a totally different approach), it
serves as an illustration of the method. The renormalization of the axial
coupling constant is governed by the fourth term of Eq. (4). After rear-
rangement with the Gamow–Teller current (third term), we get:

1

2
gAψγµγ5

(

τ +
1

2f2
π

φτ · φ − τφ2

1 + φ2/4f2
π

)

ψ

=
1

2
gAψγµγ5τ ψ

(

1 −
1

3

〈

φ2/f2
π

1 + φ2/4f2
π

〉)

. (6)

On the other hand the condensate evolution is given by the expectation
value of the chiral symmetry breaking part of the Lagrangian. It is equal to

〈qq〉T
〈qq〉0

− 1 =

(

1 −
1

2

〈

φ2/f2
π

1 + φ2/4f2
π

〉)

. (7)

Hence the axial coupling constant renormalized by the pion loops (Fig. 1a)
follows, to all orders in the pion density, 2/3 of the quark condensate evo-
lution (as long as the pions dominate the thermal excitations). The factor
2/3 is easily understood here: only two pion charges out of three contribute
to the renormalization while all three charge states participate in the con-
densate evolution. The quenching of gA is in agreement with the universal
behaviour of Ref. [2] and with the former result of Ref. [9].

We now turn to the case of finite density. In symmetric nuclear matter
the isospin dependence of the pion fields average in the same way as in the
heat bath so that the expression of g∗A in terms of the pion field squared is
the same as in the previous case. However in the nuclear medium the pion
originate from the other nucleons so that the nucleon-nucleon correlations
cannot be ignored. Here it is useful to express this renormalization in the
traditional picture of meson exchange currents. We keep only the two-body
terms which are the dominant ones. The corresponding graph is that of
Fig. 1b. This type of exchange graph with two pions is unusual in nuclear
physics. Here it naturally follows from these chiral symmetry considerations.
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Fig. 2. Renormalization of the nucleonic axial coupling constant (a) — by a pion

loop in the hot pion gas (the cross denotes the heat bath), (b) — by the virtual

pion cloud in the nucleus.

A simplification occurs in the static approximation where the pions do not
transfer energy to the nucleon line. For the two-body operator we are left
with a simple form in x-space, expressed in terms of the squared pion field:

O12 = −
1

6f2
π

gA(γµγ5)1τ1ϕ2(x1, x2) , (8)

where ϕ(x1, x2) is the Yukawa field, taken at the point x1, emitted by the
nucleon located at the point x2. Sandwiching this operator between two-
nucleon wave functions and summing over all the pion emitters, we obtain:

δgex
A /gA = −

1

3f2
π

∫

dx2ρ(x2)[1 +G(x1, x2)]ϕ
2(x2, x1) , (9)

where ρ(x2) is the nuclear density and G(x1, x2) is the nucleon-nucleon
correlation function. It is clear on this expression that it is not the full
pion field squared which acts in the renormalization of gA, but only the part
which extends beyond the range of the correlation hole.

In order to get an estimate for g∗A, we assume a total exclusion of other
nucleons in a sphere of radius r0 = 0.6fm . In order to facilitate the compar-
ison of the quenching effect of gA to that of the condensate which is governed
by the nucleon sigma term, we introduce a quantity (ΣN )eff :

(ΣN )eff =
1

2
m2

π

∫

dxθ(x− r0)ϕ
2(x) . (10)

Numerically, for point-like pion emitters, we find an effective value (ΣN )eff ≈
21 MeV. This number do not include the Pauli blocking effect which removes
the occupied states in the process of pion emission. This effect has been
calculated in Refs. [10] but for the whole space integral (i.e. without a
cut-off) of the quantity φ2. Expressed in terms of a modification of the
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sigma commutator it amounts to a reduction (∆ΣN )Pauli = −2.6 MeV . The
blocking effect, which is moderate, should be even less pronounced with the
cut-off. We can ignore it.

For the renormalized axial coupling constant, we have:

g∗A/gA = 1 −
2

3

ρ(ΣN )eff
f2

πm
2
π

. (11)

This quenching applies to all the components, space or time, of the axial
current. This represents a 10% quenching at normal nuclear density (for
symmetric nuclear matter), while the condensate has dropped by 35%. The
evolution of gA is sizeably slower. Other renormalization effects have to be
added. They act differently on the different components. In the case of the
space component the nucleon polarization under the influence of the pion
field N → ∆ leads to the Lorentz–Lorenz quenching [11]. The two renormal-
izations go in the same direction of a quenching. The extra reduction that I
have introduced here can help to explain the large amount of quenching ob-
served in Gamow–Teller transitions. To get an idea, we fictitiously translate
the reduction by chiral symmetry into an equivalent Lorentz–Lorenz effect.
We introduce an effective Landau–Migdal parameter δg′N∆

, to be added to
the genuine one, so as to reproduce the 10% quenching. This corresponds to
an increase δg′N∆

≈ 0.16, a significant increase. Indeed the observed quench-
ing of the Gamow–Teller sum rule requires g′N∆

to be as big as 0.6 while
the favoured theoretical value is around 0.4 [12]. Hence the chiral induced
quenching helps to account for the difference.

Independently of the role played by the short range NN correlation, which
reduce the amount of quenching, a major difference between the axial cou-
pling constant and condensate evolutions arises from the following effect: for
gA, the pion scalar density is the relevant parameter while the condensate
evolution is only partly governed by this quantity. We have seen that there
is a non pionic contribution to the nucleon sigma commutator, that we have
denoted ΣN , which does not influence gA , at least in the present approach.
This is a feature which distinguishes the dense case as compared to the heat
bath. Another one emerges from the comparison between the renormaliza-
tion of fπ and that of gA which renormalize in the same way in the heat
bath. This is no longer true in the medium. For the pion decay constant
the short range NN correlations play no role as the pion born from the axial
current can be anywhere in the nucleus. The full pionic scalar density then
enters. The universality of the quenching, a striking feature of the heat bath
situation, is lost in the nuclear medium.

In summary I have shown you how the concept of parity mixing between
the axial and vector correlators, which exists in the hot pion gas can be
extended to the nuclear medium. In the last case there is in fact no mixing



2356 M. Ericson

since the pions responsible for the mixing are not part of an external system
but they belong to the virtual pion cloud which is an integral part of the
nucleus. I have shown that nevertheless certain consequences of the mixing
survive. The nucleus behaves in certain respects as the pion reservoir of
the heat bath. The mixing terms of the currents can pick a pion from this
reservoir giving rise to what can be considered as a mixing cross-section (ex:
the quasi-deuteron one). Associated with these mixing effects there occurs,
as in the heat bath, a quenching of certain coupling constants. However this
quenching is not universal. For instance gA is sensitive to the short-range
NN correlations while fπ is not.These renormalizations correspond, in the
language of meson exchange currents to an unusual type, with two exchanged
pions. In addition the renormalizations, although expressed in terms of the
pion scalar density, cannot be simply linked to the condensate evolution
because the last quantity also depends on non-pionic processes. This makes
the comparison between the two evolutions model dependent. Nevertheless
these renormalizations display in a striking way the consequence of chiral
symmetry restoration which are most directly linked to parity.

This talk reports on a work done with Chanfray and Delorme. I take this
opportunity to thank them for a most pleasant and continuous collaboration.
I thank the organizers of this meeting and Prof. J. Speth for inviting me to
participate.
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