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Michael C. Birse

Theoretical Physics Group, Department of Physics and Astronomy

University of Manchester, Machester, M13 9PL, UK

(Received June 11, 1998)

Soft-pion theorems are used to show how chiral symmetry constrains
the contributions of low-momentum pions to the quark condensate, the
pion decay constant and hadron masses, all of which have been proposed
as signals of partial restoration of chiral symmetry in matter. These have
contributions of order T 2 for a pion gas or of order mπ for cold nuclear
matter, which have different coefficients in all three cases, showing that
there are no simple relations between the changes to these quantities in
matter. In particular, such contributions are absent from the masses of
vector mesons and nucleons and so these masses cannot scale as any simple
function of the quark condensate. More generally, pieces of the quark
condensate that arise from low-momentum pions should not be associated
with partial restoration of chiral symmetry.

PACS numbers: 11.30.Rd

1. Introduction

One of the main topics being addressed by this workshop is the partial
restoration of chiral symmetry in nuclear or hadronic matter and the possi-
bility that signals of this restoration have been seen in relativistic heavy-ion
collisions. Although a rather unified picture seemed to be emerging from
some of the previous contributions, what I want to do here is to unravel
some of the threads in this picture by examining whether changes in quan-
tities like the quark condensate, the pion decay constant and hadron masses
are in fact related to each other, and the extent to which they can be inter-
preted in terms of symmetry restoration.

Central to these questions are the soft-pion theorems that embody the
consequences of chiral symmetry for interactions of low-momentum pions [1].
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The focus of this contribution will be the constraints that these place on the
properties of hadrons in matter. I will devote most of my discussion to the
case of a warm gas of pions, where the calculations are somewhat cleaner
than for nuclear matter. In fact the role of chiral symmetry in the pion gas
is rather an old topic [2–12] and it is rather embarrassing to admit how long
it has taken me learn the lessons from it. However I want to stress that
these lessons are general ones and apply equally to the case of cold nuclear
matter [13–16].

The chiral isospin symmetry SU(2)×SU(2) is a good approximate sym-
metry of the QCD Lagrangian, broken only by the small current masses of
the up and down quarks. This symmetry is realised in the hidden (“spon-
taneously broken”) mode since the QCD vacuum is not chirally invariant.
This can be pictured in terms of a Mexican-hat potential for the vacuum
with a “chiral circle” of degenerate vacuum states running round its brim.
The pions are, approximately, the corresponding massless Goldstone bosons.
The nonzero quark condensate (the scalar density of quarks in the vacuum
〈ψψ〉) is an example of an order parameter for the hidden symmetry. Other
indications of the hidden nature of this symmetry include the nonzero pion
decay constant fπ, the absence of degenerate parity doublets in the hadronic
spectrum, and the masses of constituent quarks.

In dense hadronic matter, which could be either a gas of pions or nuclear
matter, we expect the vacuum to move towards the phase with manifest
chiral symmetry. Signals of such a partial restoration of the symmetry that
have been suggested include:

• a decrease in the magnitude of the quark condensate,

• a smaller pion decay constant,

• smaller splittings between states of opposite parity in the hadronic
spectrum, for example the ρ and a1 mesons

• decreased hadron masses.

Although much attention has focussed on the last of these, this effect has
been demonstrated only in mean-field approaches such as the linear sigma
and Nambu–Jona-Lasinio models. The general arguments outlined here
show that pionic fluctuations make significant, but very different, contribu-
tions to these quantities and so it is important to go beyond the mean-field
approximation in studying hadron properties in matter.
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2. Soft-pion theorems

The basic tools for elucidating the consequences of chiral symmetry for
the interactions of pions are the “soft-pion theorems” [1]. These are obtained
from physical matrix elements involving pions with zero 3-momentum by
extrapolating them to zero energy. This (off-shell) extrapolation is done
using the PCAC pion field

φ =
∂µA

µ

fπm2
π

, (1)

which connects pions to chiral symmetry. For example, the soft-pion limit
of the pion propagator defined using this field gives the Gell-Mann–Oakes–
Renner (GOR) relation,

m̄〈0|ψψ|0〉 ≃ −m2
πf

2
π, (2)

which relates the pion mass to the expectation value of the explicit symmetry
breaking piece of the QCD Hamiltonian, HSB = m̄ψψ. Taking a typical
value of m̄ ≃ 7 MeV for the average of the up- and down-quark current
masses, we find that the quark condensate in vacuum is 〈ψψ〉 ∼ −3 fm−3.

For a more general matrix element we have

〈α|O|βπ(q)〉 ≃ −
i

fπ
〈α|[Q5,O]|β〉, (3)

up to corrections involving the pion momentum q or the explicit symmetry
breaking strength m2

π. The connection between a commutator with an axial
charge operator and creation or annihilation of a pion shows that a low-
momentum pion can be thought of as acting like a chiral rotation. This
implies that any pion scattering amplitude should vanish as q → 0 in the
chiral limit (m2

π = 0). A central role in the discussion here will be played
by the isospin-averaged amplitude for scattering of a pion from some other
hadron. The leading terms in the chiral expansion of this amplitude are of
order q2 and m2

π.
In studying changes to the quark condensate, we shall need the scalar

densities of quarks in hadrons. For the pion this can be evaluated with the
help of a soft-pion theorem:

〈π|m̄ψψ|π〉 ≃ −
1

f2
π

〈0|[Q5, [Q5,HSB]]|0〉 ≃ m2
π, (4)

where the GOR relation (2) has been used to express the matrix element
in terms of m2

π. Factoring out the covariant normalisation of 2mπ, we are
left with the pion-pion sigma commutator σππ = mπ/2 = 70 MeV. This



2360 M.C. Birse

corresponds to an integrated scalar density of quarks in a pion of σππ/m̄ ∼
10. This large number shows that pions make important contributions to
the scalar density of quarks in hadrons or matter. These contributions are
proportional to the scalar density of pions in the state of interest, 〈α|1

2
φ2|α〉.

The corresponding matrix element for a nucleon can be found from the
pion-nucleon sigma commutator, σπN = 〈N |m̄ψψ|N〉 ≃ 45 ± 7 MeV [17].
This corresponds to an integrated scalar density of quarks in a nucleon of
∼ 6. In contrast, simple relativistic quark models would give values of 2–3.
The difference arises from the pion cloud of the nucleon, which typically
contributes about 25 MeV to σπN in chiral bag or soliton models [18].

3. Warm pion gas

To illustrate how chiral symmetry constrains hadron properties in mat-
ter, I consider first the case of matter at finite temperature in the chiral
limit. At low temperatures and zero baryon density, hadronic matter is just
a gas of weakly interacting, massless pions. This has been studied for some
time [2–12] and the results are cleaner than those for cold nuclear matter.

The scalar density of quarks in a pion in the chiral limit is, from (4),

〈π|ψψ|π〉 =
m2

π

m̄

∣

∣

∣

∣

m̄→0

= −
1

f2
π

〈0|ψψ|0〉, (5)

and the scalar density of pions in the gas, obtained by averaging over the
Bose-Einstein distribution, is

〈1

2
φ2〉T =

T 2

8
. (6)

With these we can calculate the change in the quark condensate to order
T 2:

〈ψψ〉 ≃ 〈0|ψψ|0〉 + 〈1

2
φ2〉T 〈π|ψψ|π〉 = 〈0|ψψ|0〉

(

1 −
1

8

T 2

f2
π

)

. (7)

In the presence of matter, the leading change in the mass of any particle
is given by a sum over (the scalar parts of) the amplitudes for the scattering
of the “probe” particle from the various particles in the medium. For a
heavy hadron, such as a vector meson or nucleon, chiral symmetry requires
that the isoscalar hadron-pion scattering amplitude be of order q2 (where q
is the pion momentum) in the chiral limit. As a result the change in the
mass of such a particle is proportional to an integral over the Bose-Einstein
distribution of pions weighted with an extra factor of momentum-squared
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relative to (6). Since the typical momenta of the pions in the gas are of order
T , the changes in hadron masses are of order T 4 instead of T 2. This shows
that hadron masses in the gas cannot scale like the the quark condensate
(or any simple function of 〈ψψ〉).

In fact, by analogy with the behaviour of a superfluid [19], we should
not have expected any simple relation between these quantities. There the
condensate density (the order parameter) changes at order T 2 while the su-
perfluid density (which is a response function) changes at order T 4. Hadron
masses can be defined in terms of response functions of the QCD vacuum
and so behave in a similar way to the superfluid density, and quite differently
from the condensate.

One of the lessons to be learned from this is the changes in the quark con-
densate from low-momentum pions do not necessarily signal partial restora-
tion of the symmetry. Large-amplitude, low-momentum fluctuations of the
pion fields around the chiral circle (or indeed a pion condensate) can signifi-
cantly reduce the average value of the condensate without moving the system
off the chiral circle. In such a case the hadron spectrum remains unchanged
and so the chiral symmetry is still hidden. One should remember that 〈ψψ〉
is only one possible order parameter; others can become important if 〈ψψ〉
is small1.

We can excite a superfluid just by pouring it. Since this action is invari-
ant under phase rotations of the condensate, any changes in the response
function reflect changes in the excitation spectrum. In contrast the easiest
ways to study the response of the QCD vacuum involve operators that are
not chirally invariant. As a result the corresponding response functions can
contain temperature-dependent pieces that reflect the chiral transformation
properties of the operators and have nothing to do with any changes in
the spectrum. A typical example is the correlator of two isovector vector
currents,

CV
µν(p, T ) = (2π)−4

∫

d4x eip·x〈T[Vµ(x), Vν(0)]〉T . (8)

The pion gas changes the couplings of the currents to physical hadrons
and mixes them with the axial currents [3, 4, 8], so that to leading order in
T 2 the correlator is

CV
µν(p, T ) ≃

(

1 −
1

6

T 2

f2
π

)

CV
µν(p, 0) +

1

6

T 2

f2
π

CA
µν(p, 0), (9)

where, after averaging over isospin, the leading effects of the pion gas can
be expressed in terms of 4

3
〈α|1

2
φ2|α〉. The effect on the correlator of axial

1 The pion would then be anomalously light [20], with a mass proportional to m̄ rather
than its square root. There is a school of chiral perturbation theory that suggests
that this is already the situation in the normal vacuum [21].



2362 M.C. Birse

currents is very similar, with the pion decay constant becoming [2]

fπ(T ) = fπ

(

1 −
1

12

T 2

f2
π

)

. (10)

However, even though the couplings change and the correlators mix at
order T 2, the spectrum of states excited by the currents in (9) is still that

of the zero-temperature correlators CV,A
µ,ν (p, 0). Hence to this order the ρ-a1

splitting is unchanged and there is no restoration of chiral symmetry in the
spectrum.

These contributions to correlators in matter arising from the chiral trans-
formation properties of the operators mean that we need to be rather careful
when using QCD sum rules to study hadrons in matter. These sum rules
are obtained by using the operator product expansion (OPE) to relate cor-
relators to condensates (expectation values of various local operators).

A particularly simple case is the correlator of two isoscalar vector cur-
rents, which can be used to derive a sum for the mass of the ω meson.
The OPE of this correlator involves only chirally invariant operators such as
[ψγµ(1±γ5)λaψ]2. The expectation values of these are known as four-quark
condensates. They are often estimated by Fiertz rearranging to write them
in terms of 〈(ψψ)2〉 and then assuming a factorised form, κ〈ψψ〉2. However
for a chirally invariant operator O a soft-pion theorem gives

〈π(q)|O|π(q)〉 ≃ −
1

f2
π

〈0|[Q5, [Q5,O]]|0〉 = 0, (11)

and so there should be no contributions to the condensates that are propor-
tional to the scalar density of pions. The leading temperature dependence of
the OPE representation of the correlator is thus of order T 4. This matches
with the order-T 4 change in the ω mass, but it is not consistent with the
factorised ansatz often used for the four-quark condensates.

The correlators used to derive sum rules for the ρ meson and nucleon
masses are more complicated. The OPE’s of these include operators that
are not chirally invariant and so give rise to terms of order T 2 but a careful
treatment of low-momentum pion terms in the spectral representations of
the correlators shows that these exactly cancel the pieces of order T 2 from
the OPE [4, 5, 8, 10]. This leaves leading changes in the masses that are of
order T 4.

4. Nuclear matter

The discussion of nuclear matter is somewhat more complicated because
the pions involved are virtual rather than real, and because the nucleons are
strongly interacting. Nonetheless the same basic features are present [13].
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Let me start with the simple additive estimate of the change in the quark
condensate in nuclear matter with a scalar density ρs of nucleons [22]:

〈ψψ〉ρ ≃ 〈0|ψψ|0〉 + ρs〈N |ψψ|N〉

≃ 〈0|ψψ|0〉

(

1 −
ρsσπN

f2
πm

2
π

)

. (12)

This suggests a ∼ 30% reduction in the quark condensate in nuclear matter
with a density of ρ = 0.17 fm−3.

This change in the condensate contains a significant contribution from
low-momentum pions, in this case virtual particles in the pion clouds of the
nucleons. Like the real pions in the gas, these cannot contribute to hadron
masses in matter. To pick out their contribution we can make use of the
methods of chiral perturbation theory (ChPT) [23].

The relevant piece is proportional to the scalar density of pions in a
nucleon. The chiral expansion of this quantity in powers of mπ has the form

〈N |
1

2
φ2|N〉 ≃ Aπ −

9

16π

(

gπNN

2MN

)2

mπ + · · · . (13)

One can write the sigma commutator as a sum of core and cloud contribu-
tions,

σπN = Acorem
2
π + 〈N |1

2
φ2|N〉〈π|m̄ψψ|π〉

≃

[

A−
9

16π

(

gπNN

2MN

)2

mπ

]

m2
π. (14)

The constant A (= Acore + Aπ) is a “counterterm” in ChPT. It contains
both short-distance (core) and long-distance (cloud) contributions, which
cannot be separated in a model-independent way. In contrast the second
term, which has a nonanalytic dependence on m2

π, is a purely long-distance
effect. It arises from the lowest-momentum pions in the tail of the pion
cloud. It is model-independent, with a coefficient given entirely in terms of
the πN coupling and nucleon mass. Moreover, being a long-distance effect,
it is unaffected by short-range correlations between the nucleons. We can
therefore use nonanalytic terms like this as markers for the contributions of
low-momentum pions.

From (13) we see that there is a contribution from these pions to the
quark condensate in matter that is of order mπρ. For hadron masses to scale
with 〈ψψ〉ρ, there would need to be a term of order mπ in the hadron-nucleon
scattering amplitude. However Weinberg’s power counting shows that no
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such term in present [24]2. Instead the leading nonanalytic contribution from
isoscalar two-pion exchange to hadron-nucleon scattering is of order m3

π,
which gives rise to a leading change in the hadron mass of order m3

πρ. This
suppression by two chiral powers relative to the scalar density of pions has
exactly the same origin as in the pion gas: the leading terms of the isoscalar
pion-hadron scattering amplitude are of order q2 and mπ, as required by
chiral symmetry. Hence we again see that hadron masses cannot scale like
any simple function of 〈ψψ〉ρ in matter [13].

There are also similar contributions from low-momentum pions to the
couplings of vector and axial currents to hadrons. These can lead to changes
in quantities like fπ and gA which are proportional to 〈1

2
φ2〉 in isospin sym-

metric nuclear matter. The latter can show up as a two-pion exchange
contribution to the quenching of gA [16]. There is also an analogue of the
mixing of vector and axial correlators [15] which can, in principle, affect pion
photoproduction [16].

5. Conclusions

We have seen that there are no simple relations between changes to the
quark condensate, the pion decay constant and hadron masses in matter.
Specifically, low-momentum real or virtual pions generate terms in the con-
densate of order T 2 in a pion gas or mπρ in nuclear matter that are absent
from the masses. As a result, hadron masses cannot scale like any simple
function of the condensate (or of fπ) in matter. This is a consequence of
the chiral suppression of the interactions between low-momentum pions and
other hadrons, which means that contributions to the condensate from the
scalar density of pions cannot lead to changes in the masses of heavy hadrons
like vector mesons and nucleons.

Operators like the vector and axial currents are not chirally invariant
and so low-momentum pions can contribute to observables like fπ and gA.
In isospin symmetric matter, the lowest order pieces of the changes in such
quantities can be expressed in terms of the scalar density of pions. However
the operators have different isospin structures from the quark condensate and
so these terms have different coefficients compared with the similar term in
〈ψψ〉. More generally there is no simple relation between such couplings and
the condensate in matter.

2 Strictly, Weinberg’s counting rules apply to the two-particle irreducible scattering
amplitude. However this is the relevant amplitude for the definition of a mass that
could appear in, for example, a Dirac equation for a nucleon in matter. It avoids the
problem of strong energy dependence of the full scattering amplitude produced by
poles close to threshold.
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These results show the importance of including pionic fluctuations in any
study of hadron properties in matter. Pionic fluctuations can change the
average value of the quark condensate with moving the system off the chiral
circle, and so a decrease in one order parameter, such as the condensate, on
its own need not be a signal of partial symmetry restoration. One needs to
look at the response functions of the vacuum as well, and in particular the
hadron spectrum.

Let me finish with a question: Can we find some other order parameter
or similar quantity with a more direct relation to hadron masses than the
quark condensate?

I am grateful to B. Krippa and J. McGovern for helpful discussions. This
work was supported by the EPSRC.
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