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A property of Quantum Chromodynamics (QCD) which should be in-
cluded into effective models describing QCD at low energies is chiral sym-
metry. It is conserved if one assumes that the quark masses are zero. This
symmetry is spontaneously broken, which leads to constituent quark and as
the Goldstone Boson one obtains the pion and its chiral partner the σ me-
son. We use the linear σ model which has compared to the non-linear one
the advantage, that one treats pions π and σ mesons not only on the chiral
circle, but allows also fluctuations around it. The scale of this fluctuations
is the σ meson mass. If one eliminates gluons in second order, one obtains
the “Tuebingen chiral quark model” with effective gluon exchange between
the quarks and with pions and sigma mesons. A confinement potential is
added. With this model we describe the photo and electro-excitation of
the nucleon into the delta resonance and the decay of this resonance into a
nucleon and a pion. The angular distribution gives information about the
C2/E2 admixture into the M1 transition from the nucleon to the delta res-
onance. The quadrupole contribution of this transition has been described
in the past by d state admixture due to tensor forces from the gluon and
the pion exchange. This yields values which are more than a factor 10 too
small compared with recent data for the C2/E2 Sachs transition form fac-
tor. We show that meson and gluon pair exchange currents can explain the
data without the need of a large nucleon or delta deformation. The same
model is then used to describe the nucleon-nucleon phase shifts. An essen-
tial ingredient for the good agreement is to include to all orders couplings
to ∆ channels. The 1S0 phase shift can only be described in agreement
with the data if the coupling to the 5D0 nucleon delta channel is included.
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1. Introduction

In this talk I want to ask the question: Is the nucleon deformed? And in a
second part we describe within the same “Tuebingen chiral quark model” the
nucleon-nucleon interaction. The starting point are symmetries of the QCD
Lagrangian. For zero quark masses, left-handed quarks stay always left-
handed and right-handed quarks always right-handed. In this approximation
QCD is chiral invariant.

Due to the strong gluon quark interaction, quark-antiquark pairs form
in the vacuum a quark condensate. This breaks chiral symmetry by giving
the quarks a constituent mass of the order of 300 MeV. The Goldstone
Boson of this symmetry breaking is the π meson with the chiral partner,
the σ scalar, isoscalar meson. For describing the π and σ meson, which
couple to the quarks, we are using the linear σ model. The non-linear σ
model eliminates the σ meson on the chiral circle, while the linear sigma
model allows fluctuations around the chiral circle for which the scale is the
σ meson mass which is determined by the partially conserved axial vector
current (PCAC).

m2
σ = (2mq)

2 + m2
π = (675 MeV)2 . (1)

Chiral symmetry dictates the coupling of the quarks to the σ and π
mesons.

Lπσ,q = −gq̄ [σ + iγ5π · T ] q

g = g0

(

∧2

Λ2 + k2

)2

. (2)

The quark π, σ coupling constant g has a form factor with the cut-off
parameter Λ which is due to the internal structure and the finite size of the
constituent quarks.

〈r2〉1/2 =
3

Λ2
= 0.41 fm ,

Λ = 4.2fm−1=̂0.828 GeV/c ,

g2
0

4π
=

g2
σq

4π
=

g2
πq

4π
=

(

3

5

mq

mN

)2 g2
πN

4π
. (3)

The value of the quark σ and π coupling constant is derived from the
pion-nucleon coupling constant.
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Eliminating the gluons in second order, one obtains a Hamiltonian for
the n = 3 and n = 6 quark system.

Hnq =

n
∑

i=1

[

mi +
pi

2

2mqi

]

+
n

∑

i<j=1

[

V qq
g (i, j) − λi · λjar2

ij

+ V qq
π (i, j) + V qq

σ (i, j)] . (4)

This Hamiltonian eliminates the gluons, the pions and the σ mesons in
a second order and adds a quadratic confinement potential. The relativistic
Hamiltonian is expanded up to the order of v2/c2. The expectation value
of this quantity in the nucleon wave function is about 0.46 and the square
which is neglected therefore 0.20. The Hamiltonian should therefore not
be more accurate than 20 %. But the results show a better agreement
with experiment in most observables. This probably is connected with the
fact that the four free parameters of the model are adjusted including this
truncation. The four quantities are determined by the nucleon mass mN =
938 MeV, the ∆ mass m∆ = 1232 MeV, the charge root mean square radius
of the proton and the pion-nucleon coupling constant. The cut-off parameter
Λ is taken from the size of the constituent quarks, estimated in the literature
(see above) and the oscillator length b for the harmonic oscillator basis used
is determined by the stability condition: The mass of the nucleon must
have a minimum at the right root mean square charge radius of the proton
including the pion cloud at the right mass of 938 MeV.

The Hamiltonian (4) is now used to calculate the photo production of
the ∆ resonance and the decay of this resonance into a pion and a nucleon.

Spin

Meson cloud

Fig. 1. The figure shows the coupling of the pion cloud to the nucleon with three

valence quarks.
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The meson cloud couples preferentially along the spin axis of the nucleon
(see Fig. 1). Since the pion cloud exerts pressure, one can expect that the
nucleon is deformed. The microscopic reason for a possible deformation of
the nucleon is a tensor force component in the pion and gluon exchange
part of the Hamiltonian (4). The d state admixture in the single quark
wave function lies between 0.5 to 1.0 % including the tensor forces from
pion and gluon exchange. Experimentally the quadrupole deformation is
measured according to figure 2 by photo excitation of the delta resonance
and the angular distribution of the decay pion. The quadrupole deformation
is described by the C2 longitudinal Coulomb and the transversal electric
quadrupole (E2) Sachs form factor at the photon point (three momentum
transfer q

2 =0 and energy transfer ω = m∆ − mN ).

Nucleon Delta

C2/E2

M1

δ = C2/E2
M1

γ

θ
π

Fig. 2. The quadrupole deformation of the nucleon is determined by photo excita-

tion of the nucleon into the delta resonance. The (C2, E2)/M1 ratio is determined

by the angular distribution of the pion.

TABLE I

Experimental E2 Sachs form factors [9] of the N −∆ transition by photoexcitation.

GE2(q
2 = 0; w = m∆ − mN ) Ref.

0.066 (18) 4

0.133 (20) 5

0.110 (20) 6

0.141 7

0.14 8
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The theoretical values of the E2 Sachs form factor at the pseudo threshold
are listed in Table II.

TABLE II

Sachs form factor GE2 at the photo point and at an energy transfer ω = m∆ −mN

calculated by Gershstein et al. [10], by Isgur and Karl [11] by Drechsel and Gianinni

[12] and by Capstick and Karl [13]. Reference [9] gives the value calculated by the

Tuebingen group including two-body currents. The last line shows an average of

the experimental values (mainly references [5, 6]). The values of Refs. [10–13] are

calculated as a one quark transition. Our value [9] includes two body currents.

GC2/E2(q
2 = 0) Ref.

0.0055 10

0.0042 11

0.0076 12

0.0084 13

0.124 9

≈ 0.120 (20) Exp.

Figure 3 shows the diagrams included in the two-body currents. The pair
currents by pion exchange and by gluon exchange are the most important
ones.

g π π S

γ γ γ γ

Fig. 3. Meson exchange diagrams which allow that a photon is absorbed by two

quarks. The main contributions are the pair currents from pion and gluon exchange.

The σ pair current is zero. In our approximation the pion in flight does contribute

only little to the E2 strength [9].

The absorption of a photon on two quarks due to exchange currents
allows for a double spin flip (see figure 4). This can produce an electric
quadrupole transition from the nucleon into the ∆ resonance without any
d-state contribution of the valence quark wave functions.

Table II shows a comparison of our theoretical value including two-body
currents (second last line) and the experimental data of reference [5–7]. The
agreement is remarkably good, only a very small percentage of the transition
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Nucleon Delta

C2/E2
=(M1)

q=0; 

π

ω=m -m N

2

∆

M1

γ

Fig. 4. The figure shows how the absorption of a photon due to exchange currents

can flip the spin of two quarks and induce a transition from the nucleon to the

delta resonance without any deformation of the valence part of the nucleon or the

delta wave functions.

described by the Sachs form factor is due to the impulse approximation
(single quark transition) with deformation. By far the largest part is due to
the two-body currents. Especially due to the pair currents with pion and
gluon exchange.

2. The nucleon-nucleon interaction

In this chapter I want to present results concerning the nucleon-nucleon
phase shifts calculated on the six-quark level with π and σ meson clouds. The
parameters are determined as indicated in the introduction. To describe the
deuteron properties, it is essential to have the right deuteron binding energy
of 2.22 MeV. In the Tuebingen chiral quark model this quantities depends
sensitively on the charge radius of the proton including the pion cloud, which
determines the oscillator length b = 0.5 to 0.6 fm for the oscillator basis wave
functions. b = 0.5 fm yields the total mass of the deuteron by about 1 MeV
too large. This is a deviation less than 1 per thousand. But the binding
energy is by a factor 2 wrong. Thus we do a fine tuning of the oscillator
length to reproduce the correct binding energy. This requests b = 0.518 fm,
which does not modify the charge radius of the proton out of the range of
the experimental uncertainty.

The phase shifts are calculated on the six-quark level with pion and
σ meson exchange, using the resonating group method [1, 2]. We include
excitations into the delta resonance. For example in the 1S0 channel the
coupling of the six-quarks into a nucleon and a delta configuration with spin
S = 2 and orbital angular momentum L = 2 (5D0 configuration) plays an
important role [14]. The experimental phase shifts are taken from Arndt and
coworkers [15]. The comparison between the different phase shifts 2S+1LJ

up to D-waves are given in figures 5–8.
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Fig. 5. Singlet 1S0NN phase shift including chiral symmetry and coupling to the
5D0(N∆) channel (solid line). The dots are the experimental phase shifts. The

dashed line is the result without the inclusion of the 5D0N∆ channel.

Fig. 6. 3S1NN phase shift. The dots are the experimental values. The solid line

is the result of the present model including chiral symmetry. The dashed curve is

the result without coupling to the 3D1NN partial wave.
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Fig. 7. Phase shifts of the 3P0,
3P1 and 3P2 partial waves of the nucleon-nucleon

interaction as a function to the laboratory bombarding energy compared with the

data.

Fig. 8. Phase shifts of the 3DJ(J = 1, 2, 3) partial waves.
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TABLE III

Parameters of the Tuebingen chiral quark model fitted by the mass of the nucleon,

the mass of the delta resonance, the pion nucleon coupling constant, the charge

radius of the proton, the stability condition for the proton (minimum of the proton

mass at the right radius and the right mass). The σ meson mass is determined

by the partially conserved axial vector current and the cut-off parameter Λ for the

size of the constituent quarks is taken from the literature.

mq b αs g2
πNN/4π ac mσ Λ

[MeV] [fm] [MeV fm−2] [fm−1] [fm−1]

313 0.518 0.485 13.7 46.94 3.42 4.2

3. Conclusions

In this contribution I wanted to essentially communicate two messages:

• (i) The electric quadrupole contribution to the photo induced tran-
sition from the nucleon into the delta resonance does not request a
deformation of the nucleon or/and the delta resonance. Two-body ex-
change currents allow for a double spin flip, which is essentially an
E2 = (M1)2 transition. The one-body impulse approximation for the
nucleon-delta transition works only with a d-state admixture, due to
the tensor force from gluon and pion exchange. But the deforma-
tion produced by the tensor force is by far too small to explain the
data. The two-body exchange currents explain in a very natural way
a measured Sachs form factor at the photo point for the quadrupole
transition from the nucleon to the delta resonance.

• (ii) The same quark model (“Tuebingen chiral quark model”) can also
describe the nucleon-nucleon phase shifts in agreement with the data.
For the 1S0 phase shift the 5D0(N∆) admixture plays an important
role. The two-body spin-orbit force from gluon and σ exchange may
add or subtract in different partial waves. This improved the descrip-
tion of the 3LJ phase shifts without fitting the two-body spin-orbit
strength.

I want to thank Dr. A. Buchmann, E. Hernández Dr. A. Valcarce, Dr.
U. Meyer, who were essentially contributing to these results.
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