
Vol. 29 (1998) ACTA PHYSICA POLONICA B No 9

DUAL GINZBURG–LANDAU THEORY
AND QUARK NUCLEAR PHYSICS ∗

H. Toki, H. Suganuma, M. Fukushima, K. Amemiya

A. Tanaka, S. Umisedo and T. Sakai

Research Center for Nuclear Physics (RCNP), Osaka University

Ibaraki, Osaka 567, Japan

(Received July 3, 1998)

The fundamental building blocks of matter are quarks. Hence, it is fun-
damental to describe hadrons and nuclei in terms of quarks and gluons, the
subject of which is called Quark Nuclear Physics. The quark–gluon dynam-
ics is described by quantum chromodynamics (QCD). Our interest is the
non-perturbative aspect of QCD as confinement, chiral symmetry breaking,
hadronization etc. We introduce the dual Ginzburg–Landau theory (DGL),
where the color monopole fields and their condensation in the QCD vac-
uum, play essential roles in describing these non-perturbative phenomena.
We apply the DGL theory to various observables. We discuss then the
connection of the monopole fields with instantons, which are the classical
solutions of the non-abelian gauge theory.

PACS numbers: 12.38.–t

1. Introduction

In Quark Nuclear Physics (QNP), we describe hadrons and nuclei in
terms of quarks and gluons. The most essential phenomena in QNP are con-
finement of quarks and gluons and chiral symmetry breaking. It is difficult
to describe confinement in a clear manner, while chiral symmetry breaking
is described very nicely in the NJL model [1].

An interesting picture of color confinement was proposed around 1975
[2–4]. When we insert a superconductor into a magnetic field, the supercon-
ductor does not allow the magnetic field to pass through it. When the mag-
netic field is strong and the superconductor is of second kind, the magnetic
field should go through the superconducting material in a small vortex-like
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configuration by breaking the Cooper pairs by the minimum amount. This
is known as the Meissner effect. The idea is to take its dual version for quark
confinement. If the vacuum is normal, the color electric field should look like
the one of the Coulomb potential between a positive and a negative color
charge. If the vacuum is superconductor-like (dual superconductor), then
the vacuum inhibits the electric field from passing through it and hence the
color electric flux ought to be confined in a vortex-like configuration. This
is called the dual Meissner effect. For this picture to be accepted, however,
we should verify the abelian dominance assumption and the appearance of
color magnetic monopole from QCD.

In 1981 ’t Hooft demonstrated the natural appearance of color magnetic
monopoles in QCD [5]. In the non-abelian gauge theory like QCD, he in-
troduced a particular gauge called abelian gauge, to reduce it to the abelian
gauge theory like QED.

From a topological argument, color magnetic monopoles appear in the
abelian space when some condition is fulfilled. This finding then supports
the idea of the above picture for confinement. Hence, QCD naturally re-
duces to QED with magnetic monopoles, which is the Maxwell equation
with magnetic charges and currents. This Maxwell equation has the duality
symmetry, which naturally arises in the abelian gauge of QCD.

In this paper, we would like to describe how the dual Ginzburg–Landau
(DGL) theory may be derived from QCD in Sect. 2. We apply the DGL
theory to various phenomena as the static potential, chiral symmetry break-
ing, the phase transition at finite temperature etc. in Sect. 3. In Sect. 4, we
discuss the connection of the monopoles to the instantons. Sect. 5 is devoted
to the conclusion.

2. The dual Ginzburg–Landau theory

The QCD Lagrangian consists of the quark field, q, and the gluon field, Aµ,

LQCD = q̄ (iγµ∂µ − m − eγµAµ) q +
1

4
Ga

µνGaµν . (2.1)

Here Ga
µν is the anti-symmetric field tensor of the gluon fields with the non-

linear coupling terms due to the non-abelian nature. We make now the
following three assumptions to arrive at the DGL Lagrangian;

1. the color monopoles appear in the abelian space due to the choice of
the abelian gauge.

2. we introduce the Higgs term for the color monopole fields in order to
make monopole condensation.
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3. we neglect the non-abelian gluon fields for the low energy non-pertur-
bative phenomena.

These three assumptions are supported by the recent lattice QCD calcu-
lations. The appearance of monopoles is noticed by the monopole trajecto-
ries in the abelian gauge, particularly in the maximal abelian (MA) gauge [6].
There appears long and complicated monopole loops below the critical tem-
perature, which indicates monopole condensation [6–9]. The abelian domi-
nance was first conjectured by Ezawa and Iwasaki [10] for long range phe-
nomena. The lattice QCD calculations for the string tension and the chiral
condensate demonstrated this abelian dominance [11, 12].

With these three assumptions, we arrive at the dual Ginzburg–Landau
(DGL) Lagrangian [13–15],

LDGL = Ldual + q̄
(

iγµ∂µ − m − eγµ
~Aµ · ~H

)

q

+

3
∑

a=1

[

| (i∂µ − g~αa · ~Bµ)χa |2 −λ(| χa |2 −v2)2
]

. (2.2)

Here Ldual denotes the gluon dynamics in the Zwanziger form to treat the
electric and the magnetic currents [16],

Ldual = − 1

2n2

[

n · (∂ ∧ ~A)
]ν [

n ·∗ (∂ ∧ ~B)
]

ν

+
1

2n2

[

n · (∂ ∧ ~B)
]ν [

n ·∗ (∂ ∧ ~A)
]

ν

− 1

2n2

[

n · (∂ ∧ ~A)
]2

− 1

2n2

[

n · (∂ ∧ ~B)
]2

(2.3)

with the dot product (n · G)µ = nνGνµ and the cross product (A ∧ B)µν =
AµBν − AνBµ. nµ denotes a constant four vector. q is the quark field with
mass m and χa is the monopole field with the monopole charge g~αa , where
~αa is the root vector of SU(3). The dual gluon coupling constant, g, satisfies

the Dirac condition, eg = 4π. ~Bµ is the dual gauge field and ~Aµ is the gauge

field with 3rd and 8th components. ~H = (λ3/2, λ8/2) is the diagonal part
of the SU(3) generators. The last term is the Higgs term to cause monopole
condensation, where λ and v are the parameters of the DGL Lagrangian.
The monopole fields satisfy the condition,

∑3
a=1 arg χa = 0. We note that

the DGL Lagrangian has U(1)3e×U(1)8e gauge symmetry and U(1)3m×U(1)8m
dual gauge symmetry [15].

We shall see now the dual Meissner effect be caused by the monopole
condensation in the DGL theory. We separate the monopole field χa into
the mean field 〈χa〉 = v and its fluctuation χ̃a as χa = (v + χ̃a)e

iξa . Here
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the angles ξa satisfies the condition
∑3

a=1 ξa = 0. The monopole condensate
does not depend on a due to the Weyl symmetry. With this separation the
DGL Lagrangian becomes

LDGL = Ldual + q̄
(

iγµ∂µ − m − eγµ
~Aµ · ~H

)

q +
1

2
m2

B
~B2

µ +

3
∑

a=1

[

(∂µχ̃a)
2

− m2
χχ̃2

a

]

+
3
∑

a=1

[

g2(~αa · ~Bµ)2(χ̃2
a + 2χ̃av)2 − λ(4vχ̃3

a + χ̃4
a)
]

, (2.4)

where mB =
√

3gv and mχ = 2
√

λv are the masses of the dual gauge field
Bµ and the monopole field χ̃a. Hence, the monopole condensation makes
the dual gauge field massive and the two phases of the monopole field are
changed into the longitudinal degrees of freedom of the dual gauge field
(dual Higgs mechanism). As a conseqence the color electric field ~E can-
not propagate long distance than 1/mB , which indicates the dual Meissner
effect [17].

3. Application of the DGL theory

3.1. Static qq̄ potential

We apply the DGL theory first on the qq̄ static potential. We place
a quark and an anti-quark with a distance r as an external source. Af-
ter taking the mean field approximation for the monopole field χ, we take
integration over Aµ and Bµ and get the current–current interaction term,

Lj−j = −1
2
~jµDµν~jν . Here the gluon propagator is expressed as

Dµν = D(0)
µν +

1

q2

m2
B

q2 − m2
B

n2

(n · q)2 Xµν . (3.1)

D
(0)
µν denotes the free gluon propagator. The anti-symmetric tensor is made

of the constant four vector nµ and qµ as Xµν = 1
n2 ελµαβελ

νγδn
αnγqβqδ. We

can work out the static potential [15]

V (r) =
e2

12π

e−mBr

r
+

e2

24π
m2

B ln

(

m2
χ + m2

B

m2
B

)

· r . (3.2)

The potential comes out to have a Yukawa term and a linear confining term.
The coefficient of the linear confining potential agrees with the energy per
unit length of the Abrikosov vortex of the superconductor.

We may fix the parameters in the DGL Lagrangian so as to reproduce the
interquark potential of heavy quarkonium; e = 5.5, the monopole condensate
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v = 0.126 GeV and the interaction strength of the monopoles λ = 25.
These parameters lead to the magnetic charge g = 2.3, the mass of the
dual gauge field mB = 0.5 GeV, the monopole field mass mχ = 1.26 GeV
and the string tension 1.0 GeV/fm. We show the result in Fig. 1 together
with the phenomenological potential. The appearance of linear potential is
not surprising, since it is modelled in the DGL theory. It is worthwhile to
stress, however, that there are no other models, which are able to realize
confinement of colors and at the same time have a strong link with QCD as
described above.
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Fig. 1. The static potential between a quark and antiquark pair calculated within

the DGL theory to compare with the phenomenological potential of Cornell group.

Taken from Suganuma et al. . [15]

We have taken the abelian dominance assumption in the construction of
the DGL Lagrangian. The validity of the abelian dominance is demonstrated
by the recent lattice QCD calculations for the SU(2) case. The potential with
full space compares very well with the one of only the abelian space. They
agree in the long range part. [7] While in the short range part, r < 0.2 fm,
we see some difference. This result indicates that the abelian dominance
assumption is valid only in the long distance or in the infrared region.

We may get the information of the abelian dominance from another view
point. We can measure the gluon correlation, 〈Aa

µ(r)Aa
µ(0)〉, on the lattice

for the diagonal gluon and the charged gluon for the pure SU(2) gauge. The
results are shown in Fig. 3. The correlation diminishes already about 0.2 fm
for the charged gluon, while it reaches long distance for the diagonal gluon.
If we extract the mass from this correlation function, it is about 1 GeV for
the abelian case [19]. Hence, the long range physics is dominated by the
abelian gluon in the MA gauge.
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Fig. 2. The constituent quark mass calculated within the DGL theory with various

values of the dual gluon mass, which indicates the strength of monopole condensa-

tion, as a function of the Euclidean momentum square. The unit λQCD is 200MeV.

Taken from Suganuma et al. [15]
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Fig. 3. The gluon correlation, 〈Aa

µ
(r)Aa

µ
(0)〉, on the lattice for the diagonal gluon

and the charged gluon for the SU(2) gauge as a function of the four dimensional

distance, r. Taken from Amemiya and Suganuma [19].

3.2. Spontaneous chiral symmetry breaking

Chiral symmetry breaking is directly related with the quark mass gen-
eration in the QCD vacuum. How quarks behave in monopole condensed
vacuum? It corresponds to solving the Schwinger–Dyson equation, where
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quarks get the self-energy corrections due to the non-perturbative interac-
tion with gluons. The Schwinger–Dyson equation under the rainbow ap-
proximation is written as,

S−1 = S−1
0 + Tr

∫

d4k

(2π)4
Q2γµSγνD

µν . (3.3)

We take the Landau gauge and assume that the full quark propagator is
given as S−1 = iγµpµ − M(p2). We take the average over the angle of
the quark momenta with respect to the string direction n due to the quark
motion in the confining region and introduce the infrared cutoff a of the
hadronic scale.

1

(n · q)2 →
〈

1

(n · q)2 + a2

〉

av

. (3.4)

This introduction of the infrared cutoff a is made by considering the natural
weight of reducing the contribution of the long range propagation of gluons
due to confinement, which is naturally present in the DGL Lagrangian. In
order to make full order calculations without the introduction of the infrared
cutoff, it would be very interesting to perform the lattice calculations of
quark condensate with the use of the DGL Lagrangian.

With the above formulations we can perform numerical calculations for
the quark mass. The results are shown in Fig. 2, where the quark mass is
plotted as a function of the Euclidean four momentum. The quark mass,
M(q2), becomes finite at mB ∼ 200 MeV and increases with mB . We find
also the pion decay constant and the quark condensate to have the values
close to the semi-experimental values. This calculation demonstrates that
monopole condensation is the source of both the confinement and the chiral
symmetry breaking.

It is very interesting to see the results of lattice QCD calculations on
the chiral condensate, which were performed by Miyamura and his collabo-
rators [12]. The chiral condensate obtained with the full space is compared
very nicely with the one of the abelian space. The further reduction of the
abelian degrees of freedom to only the monopole field do not change the chi-
ral condensate largely. These results confirm the results of the DGL theory
on chiral symmetry breaking, on which the monopole condensation plays the
dominant role.

We have worked out also the recovery of these symmetries at finite tem-
perature in several publications [17, 18].

3.3. Meson spectrum in the pion channel

We can apply the DGL theory to the mesons. We formulate the Bethe–
Salpeter equation for mesons using the full gluon propagator and the quark
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propagator obtained by solving the Schwinger–Dyson equation. Due to its
simplicity we first work out the pion channel; the parity is Π = −(−)J and
the charge conjugation is C = −Π. The results are shown in Fig. 4. The
experimental masses are shown by the crosses with experimental widths of
the corresponding states and the theoretical ones by the black dots connected
by dashed straight lines as a function of the spin J . We find clearly the Regge
behavior; M2 ∝ J .

Fig. 4. The meson masses square, M2, in the pion channel are plotted as a function

of their spins, J . The experimental masses are shown by the crosses with exper-

imental widths of the corresponding states and the theoretical ones by the black

dots connected by dashed straight lines.

4. Instantons and monopoles

We have been talking that color monopoles are the essential degrees of
freedom for non-perturbative QCD phenomena. What is the physical origin
of color monopoles? Are they merely the mathematical objects related with
the abelian gauge fixing? What is the gauge independent objects producing
this important degrees of freedom? In order to answer these questions, we
ought to go back to the condition of the appearance of color monopoles by
choosing some SU(Nc) variables, X(x), to diagonalize. We can show that
the color monopole appears at the point where X becomes the hedgehog
configuration in the SU(2) subspace. What then causes X(x) to have the
hedgehog configurations?

Instantons are the classical solutions of the non-abelian gauge theory in
the Euclidean R4 space. It is also well known that the instantons provide the
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UA(1) anomaly and explain the η′ mass problem. We observe also clearly
instantons after cooling in lattice QCD simulations in the QCD vacuum. In
this connection, it is very interesting to see if the instantons are connected
with the color monopoles.

The instanton solution is written in the singular gauge in SU(2) gauge
theory as

Aµ(x; z, ρ) = iτaη̄a
µν

(x − z)νρ

(x − z)2 [(x − z)2 + ρ2]
, (4.1)

with η̄a
µν being the ’t Hooft symbol. z and ρ denote the center and the size

of the instanton. It is interesting to find that the A4 has the hedgehog struc-
ture; A4(x; z = 0, ρ) ∝ τaxa Hence, if we choose A4 for X(x), which is called
the Polyakov gauge, for the Abelian projection, we find the monopole at the
center of the instanton. This simple consideration clearly demonstrates the
connection of the monopoles with the instantons.

In the lattice QCD study it has been demonstrated that the Abelian
dominance assumption is fulfilled in the maximal abelian (MA) gauge [6].
In the MA gauge X(x) =

∑

µ

[

Uµτ3U
−1
µ

]

is diagonalized on the lattice, where

Uµ = eiaAµ is the link variable. This amounts to maximize the quantity

R =
∑

s,µ

Tr
[

Uµ(s)τ3U
−1
µ (s)τ3

]

. (4.2)

In this case the monopole trajectory appears around the instanton and its
radius is proportional to the instanton size [20]. These works establish the
relation between instantons and monopoles. It is then very interesting to
make an assumption that the QCD vacuum consists of multi-instantons.

We take the sum ansatz for the multi-instanton configuration [21],

Aµ(x) =
∑

k

[

AI
µ(x; zk, ρk, Ok) + AĪ

µ(x; zk, ρk, Ok)
]

. (4.3)

Here Ī denotes the anti-instanton solution, which is written in the similar
form as the instanton by replacing η̄ by η of the ’t Hooft symbol. In this
configuration, the positions and the orientations of the instantons are chosen
randomly. As for the size of instantons we take the form,

f(ρ) =
1

(

ρ
ρIR

)n
+
(

ρUV

ρ

)11Nc/3−5
. (4.4)

The power of the ultra violet distribution is obtained by the perturbative
QCD, while the power of the infrared distribution is not known. We choose
it as n = 3 and n = 5. The parameters, ρIR and ρUV, of the distribution are
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fixed to provide the peak of the distribution function is 0.4 fm. We perform
the MA projection on the lattice. We see clearly the linear relation between
the instanton size and the monopole loop length for the case of very small
instanton density.

We then calculate the monopole length distributions by increasing the
instanton density, the results of which are shown in Fig. 5. At low density
the distribution falls off as the power law. On the other hand, at high density
there appears long complicated monopole trajectories. This appearance of
the long monopole loop indicates that the whole space is strongly correlated
and the monopole condensation takes place. It is very interesting to compare
this result with the one of the lattice QCD. This is done in Fig. 5. There
are very strong one-to-one correspondence between the two cases.
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Fig. 5. The monopole length distribution. The upper two figures are the results

of the multi-instanton gas with small density (left) and with large density (right).

The lower two figures correspond to the case of pure SU(2) gauge theory on 163×4

at high temperature (left) and at low temperature (right), which correspond to the

confined phase. Taken from Fukushima et al. [21]
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5. Conclusion

Quark Nuclear Physics (QNP) is the subject to describe nucleons, mesons
and nuclei in terms of quarks and gluons. The fundamental theory of
QNP is QCD. Non perturbative phenomena are, however, difficult to de-
scribe directly in terms of QCD. Hence, we introduce the effective theory
as the workable effective theory of QNP. QCD is a non-abelian gauge the-
ory. The abelian gauge fixing and the abelian dominance assumption, which
are demonstrated by the recent lattice QCD, supports the DGL theory.
Here, the Lagrangian is written in terms of the abelian gluons and the color
monopoles. The monopole condensation is able to describe confinement of
quarks and even chiral symmetry breaking. Since they are the most essential
phenomena in QNP, the DGL theory could be said as the workable effective
theory as the shell model for Nuclear Physics. Now it is a problem of time
for theoreticians to work out mesons and baryons and their interactions and
even their properties at finite temperature. Theory is ready for exciting
experimental phenomena of QNP.

It is now an important task to derive the DGL theory from QCD. In
particular, we believe that condensation of color monopoles is the most im-
portant phenomenon to be derived from QCD. In this direction, we are now
considering the importance of instantons, which are the classical solutions
of QCD, for the derivation of the DGL theory. In fact, both the lattice QCD
calculations and an analytic study on the instanton configurations provide
strong correlations between instantons and color monopoles. Furthermore,
these studies strongly suggest that the multi-instanton configuration leads
to the highly complicated color monopole world lines, which are the signals
of monopole condensation. We stress that there remain many fruitful phe-
nomena and problems to be solved in the confinement physics. They are the
very central tasks for the Quark Nuclear Physics.

The authors thank S. Sasaki, H. Ichie and K. Kusaka for fruitful col-
laborations and many illuminating discussions on the DGL theory and non-
perturbative phenomena of QCD.
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