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In the present analysis I will detail a procedure for calculating the
baryon spectrum as a solution of an eigenvalue problem that generates
both the mass and width of the state. This is illustrated for the case of the
∆ and Roper resonances.
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1. Introduction

The baryon spectrum is one problem where QCD can confront the tra-
ditional approach to nuclear physics in terms of mesons and baryons. As
a result, it could shed information on how to amalgamate the quark-gluon
degrees of freedom of QCD with the classical meson-baryon degrees of free-
dom of nuclear physics. Since πN scattering has been the main source of
information on the low lying baryon resonances, I will address the question
of the baryon spectrum within the framework of πN scattering through the
∆ and Roper (R) resonances.

A detailed examination of the baryon spectrum, up to 2 GeV, as given in
the data tables [1], indicates that the baryon states or resonances decay to
two- or three-body final states. In particular, the non-strange decay modes
are πN , ππN , and ηN . This is with the understanding that the physical ∆
is a πN resonance, and the ρ meson is a ππ resonance. Thus to understand
this spectrum in terms of the observed degree of freedom, i.e. mesons and
baryons, it is necessary to work in a minimal Hilbert space consisting of
B, πB, and ππB, where B are those baryons with an underlying quark
structure.
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Since the determination of these resonances is predominantly based on a
phase shift analysis of the πN data, one needs to establish if rapid changes in
the cross section or partial wave amplitude are due to the presence of states
with quark-gluon sub-structure or are due to either threshold effect or a
resonance generated by the dynamics of the coupling between the allowed
channels. For this one needs to construct a model in which one can make
a distinction between these three types of phenomena that can give rise to
rapid variation in the πN amplitude.

In the present analysis I outline a model in which one can examine the
rapid variation in the πN amplitude, and establish if such variations in the
amplitude are due to states that belong to the baryon spectrum. In Sec. 2
I examine a simple model that includes the B and the πB Hilbert space for
the ∆ and R resonances. I then proceed in Sec. 3 to report how this model
has been extended to include, in addition to the B and πB space, the ππB
Hilbert space, and finally I give some concluding remarks in Sec. 4.

2. A simple model

Here, I would like to consider a simple model that illustrates the rela-
tion between πN scattering and the determination of the baryon state that
dominates the amplitude. For this I will assume that the only term in the
interaction is a pion production and absorption vertex, i.e., the interaction
Lagrangian is of the form

LI = gπBB′(q2) ψ̄B γ5 ~τ · ~φψB′ for B,B′ = N,∆,R , (2.1)

where gπBB′(q2) is a form factor which is taken, in this analysis from the
Cloudy Bag Model (CBM) [2]. In taking the πBB′ form factor from the
CBM, a connection between the quark model for the baryon and the meson-
baryon degrees of freedom has been established. In the CBM, I can define
’bare’ baryons in terms of three quark sub-structure. These baryons can
then get mesonic dressing and as a result can decay by meson emission.
Although the present analysis is based on the CBM, the formalism can be
applied to any quark model in which the mesons can couple to the valence
quarks to generate a πBB′ vertex.

I now can define my Hilbert space in terms of the number of pions present.
Since I am interested in the baryon spectrum, the state with zero and
n = 1, 2, . . . pions can be defined as:

P = |B〉〈B| and Qn = |nπ,B〉〈nπ,B| n = 1, 2, . . . . (2.2)

Since the Hamiltonian couples states of n and n−1 pions, my Hamiltonian in
this basis generates an infinite set of coupled equations. To solve this coupled
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channel problem, these equations must be truncated. The minimum level
of truncation will be determined by the degree of pionic dressing needed to
describe the decay mode of the baryon. E.g., for the ∆(1230), I will need to
take the P and the Q1 Hilbert spaces, if I am to determine the decay width
of the ∆ to a πN final state. In this case there are two coupled equations
that couple the zero- and one-pion channels. I can formally eliminate the
one pion channel with the resultant equation in the P -space describing the
∆, and include pionic dressing at the level of one pion only. This equation
is of the form [3]

[E −HPP (E)] Pψ = 0 , (2.3)

where the effective energy dependent Hamiltonian HPP is given by

HPP (E) = HPP +HPQ1
[E −HQ1Q1

]−1 HQ1P

≡ HPP +Σ(E) . (2.4)

Here Σ(E) is the shift in the mass of the ∆ due to pionic dressing. The
solution of Eq. (2.3) results in the mass and form factor of the dressed ∆,
and since the mass of the ∆ is greater than the πN threshold, the ∆ will
have a width for decay to a πN final state. This procedure could be applied
to any of the baryon states, but then the only decay mode would be the
two-body πB decay mode.

In the above analysis, the determination of the baryon spectrum was
reduced to an eigenvalue problem, with the eigenvalues being the mass and
width of the baryon states. This was achieved by working in the P -space.
On the other hand, I can formally eliminate the P -space and reduce the
problem to a two-body scattering problem in the Q1 space, i.e.,

[E −HQ1Q1
] Q1ψ = 0 , (2.5)

where the energy dependent effective Hamiltonian HQ1Q1
is

HQ1Q1
= HQ1Q1

+HQ1P [E −HPP ]−1 HPQ1
. (2.6)

This Hamiltonian describes πB scattering by a potential which consists of
an s-channel pole diagram only. In my simple model, HQ1Q1

is just the
kinetic energy of the πN system. The corresponding πB T -matrix can be
written as

T (E) = HQ1P [E −HPP −Σ(E)]HPQ1
. (2.7)

Here, I observe that a determination of the position of the pole of the
T -matrix is identical to the determination of the energy E at which Eq. (2.3)
has a solution, and the residue at this pole is the form factor as determined
by solving Eq. (2.3).
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Had I included a πN potential in my original Lagrangian,1 HQ1Q1
would

include this potential, and both the πN amplitude, and Σ(E), would get
an additional contribution that depends on this potential. However, the
solution of Eq. (2.3) with the modified Σ(E) would still give the position
of the baryon pole and its residue. On the other hand, the full T -matrix
has, in addition to the baryon pole, information about threshold effects and
possible resonances generated by dynamics of the additional πB potential
introduced.

I now turn my attention to an illustration of the above simple model for
the ∆ and Roper resonances. I will assume that the N and ∆ have a quark
substructure that is given in the CBM by (1S1/2)

3 with the ∆ in spin isospin
3/2, while the nucleon in spin isospin 1/2. The Roper is then considered
as a radial excitation, i.e. (1S1/2)

2(2S1/2), and in this case there are two
possible spin isospin wave functions. These correspond to the [56] and [70]
representation of SU(6). The parameters of this model are: the bare πNN
coupling constant f0

πNN , and the radius of the bag R which determines the
range of the πNN form factor. All other coupling constants and form factors
are related to the πNN parameters via the quark model, or SU(3).

The lowest energy baryon resonance is the ∆(1230) which decays to a
final πN state. To describe this resonance the P and the Q1 spaces are
defined as:

P : ∆ and Q1 : πN, π∆ . (2.8)

In this way the mesonic dressing of the ∆ is due to ∆ → πB → ∆ with
B = N or ∆. In Fig. 1, I present the phase shifts for three different radii R
for the bag. Also included are the VPI [4] experimental phase shifts. Here,
to get a reasonable set of phase shifts, the bare πN∆ coupling is taken to be
twice the πNN coupling constant, with f2

πNN = 0.08. The relation between
the bare πN∆ and π∆∆ coupling was maintained as defined by the quark
model. Note that the bare mass of the ∆, for the three case considered, has
been adjusted for the phase to go through π/2 at the energy of 1230 MeV.
The slope of the phase shifts in all cases is about the same, suggesting that
the width predicted for the ∆ might be independent of the bag radius.

Included also in the figure is the variation in the full width (i.e.,
Γ (E) = −2ℑ[Σ(E)]) of the resonance as a function of the imaginary part of
the energy Ei = ℑ[E]. The real part of the energy is fixed at Er = ℜ[E] =
1230 MeV. Here, I find that the full width Γ (E) is sensitive to both the
radius of the bag R and the energy Ei at which the width is calculated.
This suggests that any analysis of the data to extract the ∆ mass and width
requires that one analytically continue the πN amplitude to the ∆ pole.

1 The πB potential could be the sum of a u-channel baryon pole plus heavy meson
exchange as is the case in meson exchange potentials.
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Fig. 1. The variation in the width of the ∆ as function of the distance form the

real energy axis for three different radii of the bag. Also included are the phase

shifts for the three different values of R.

Although there is a similar variation in the mass-shift (∆m = ℜ[Σ(E)]) for
the ∆, this variation is not as pronounced.

I can extend this model to the Roper resonance provided I ignore the
three-body decay mode of the Roper. In this case the P and Q1 spaces are
given by

P : N, [56], [70] and Q1 : πN, π∆, π[56], π[70] , (2.9)

respectively. Now Eq. (2.3) results in a set of three coupled equations with
a bare mass for the N and the R as parameters. These bare masses are
adjusted to give the physical mass of the nucleon of 940 MeV, and a physical
Roper mass of 1440 MeV. Since the CBM predicts the same mass for the
[56] and [70], I have kept the bare masses to be identical for the bare Roper
states. The coupling constant in this case is taken to correspond to fπ = 93
while the radius of the bag is taken to be 1.0 fm.

TABLE I

The mass and width of the two P11 resonances as calculated from the position of
the pole (i), and on the real energy axis (ii).

Baryon Method (i) Method (ii)

N 940–0.0 i 794.7–205.0 i
R1 1440–2.8 i 1440.6–3.3 i
R2 1470–51.3 i 1480.5–38.8 i

Here again I can examine the width of the Roper by calculating the width
on the real energy axis (method (ii)) at E = 1440 MeV, or at the pole of the
scattering amplitude, i.e. a solution of Eq. (2.3) (method (i)). In Table I,
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I give the mass and width of the nucleon, and the two P11 resonances, as
determined by the two methods. It is clear that a determination of the width
on the real energy axis is valid provided the width of the resonance is small.
However, for the Roper resonance with a total width of ≈ 250 MeV [1], a
calculation of the width on the real axis can be a poor approximation.

I would now like to turn my attention to the P11 phase shift in this
model. Fig. 2 shows the phase shift as a function of center of mass energy.
The fact that I have included both the nucleon and the two Roper states in
the P -channel, results in the phase shifts changing sign. With two Roper
resonances included, I expect the phase shifts to exhibit the effect of the
two resonances. In fact that is exactly what is found. The wider of the two
resonances takes the phase shifts through π/2, while the narrower of the
two resonances is only a blip in the phase shift curve. Only when I magnify
the scale of my plot do I see the effect of this narrow baryon resonance.
This is an example of a baryon state that is very difficult to observe in πN
scattering. Since I have not included the coupling to the ππN channels,
the width of the Roper resonances in this model are too small for a good
agreement with the experimental phase shifts. I should remind the reader
that the model considered here for the Roper is very simple and there have
been no parameters to adjust.
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Fig. 2. The πN phase shifts in the P11 channel. Note that the phase shifts are a

result of two Roper resonances, one very narrow, which causes a small bump in the

phase shifts.
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3. The πB − ππB model

The fact that the Roper resonances came out too narrow, was a result
of not including the ππB channels. I can overcome this problem by the
addition of the Q2 Hilbert space. Now I have three coupled equations of the
form

(E −HPP )Pψ = HPQ1
Q1ψ ,

(E −HQ1Q1
)Q1ψ = HQ1P Pψ +HQ1Q2

Q2ψ ,

(E −HQ2Q2
)Q2ψ = HQ2Q1

Q1ψ . (3.1)

The formal elimination of the Q2 Hilbert space gives an equation in the Q1

part of the space that has effectively a potential as part of HQ1Q1
. This

additional potential is nothing more than the crossed diagram or u-channel
baryon pole diagram. If I take the next step of formally eliminating the Q1

part of the space, then in the P space my equation is still of the form given
by Eq. (2.3), but now Σ(E) has an additional contribution from the ππB
part of the Hilbert space, and is of the form

Σ(E) = HPQ1

[

E −HQ1Q1
−HQ1Q2

(E −HQ2Q2
)−1 HQ2Q1

]

−1

HQ1P .

(3.2)
This is represented diagrammatically in Fig. 3, with the πN amplitude in
the second diagram being due to the potential resulting from the elimination
of the Q2 Hilbert space.

Fig. 3. The diagrammatic contribution to Σ(E) when HQ1Q1
includes a πB inter-

action either from the elimination of the Q2 space, or the introduction of a πB

potential.

Although this model includes the ππB part of the Hilbert space, it still
does not include the mechanism for the decay of baryons into Nρ where
the ρ is a ππ resonance. To include the Nρ channel, I need to include
the ππ interaction in the Q2 Hilbert space. If in addition I include a πB
interaction to represent heavy meson exchange, e.g. ρ-exchange, then this
πB interaction needs to be included in both the Q1 and the Q2 spaces.
This creates two problems: (i) The operator HQ1Q2

[E −HQ2Q2
]HQ2Q1

is
now the full three-body Green’s function for the ππB system with pair-wise
interaction, and will require Faddeev technique to handle it. (ii) The πB
interaction in the Q1 Hilbert space is also present in the Q2 Hilbert space.
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This creates a bootstrap problem because this interaction is present in both
HQ1Q1

and HQ2Q2
, and the equation in the Q1 Hilbert space that effectively

includes the Q2 Hilbert space is non-linear in the πB interaction.
The first of these problems is simple to overcome by employing standard

Faddeev methods, and has been carried through using the above projec-
tion operators by Fuda [5], and using the classification of diagrams in time
ordered perturbation theory by Afnan and Pearce [6]. The second of the
problems can be resolved in time ordered perturbation theory by observing
that the πB amplitude required in the Q2 Hilbert space is at an energy mπ

less than the energy at which the amplitude is required in the Q1 Hilbert
space. As a result, I can determine the πB amplitude below the pion pro-
duction threshold within the P and Q1 Hilbert spaces, and then use that
amplitude to solve the equation above the production threshold. This has
been carried out within the framework of the CBM with volume coupling
for the P11 channel by Pearce and Afnan [7].

4. Conclusions

From the above analysis of a simple two channel model for the ∆(1230)
and the Roper resonances, the following conclusions may be deduced.

(i) I can commence with a valence quark model for the baryon with meson
coupling to the quarks and predict the baryon spectrum as resonances
that decay to observed mesons and baryons. The width of these states
is determined by the degree of meson dressing included.

(ii) By solving Eq. (2.3) as a complex eigenvalue problem I can deter-
mine the poles of the S-matrix that correspond to baryons with quark
sub-structure. In this way I can identify if the rapid variation in the
amplitude is due to a baryon state, a threshold effect, or a dynamically
generated resonance with a corresponding S-matrix pole.

(iii) Finally, I note that the extraction of mass and widths of πN resonances
will require the analytic continuation of the amplitude to the resonance
pole, and this analytic continuation can be model dependent.
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The Dynamics of πN Scattering and the Baryon Spectrum 2405

REFERENCES

[1] R.M. Barnett et al. Phys. Rev. D54, 1173 (1996).

[2] A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1984).

[3] J.A. Elsey, I.R. Afnan, Phys. Rev. D40, 2353 (1989).

[4] R.A. Arndt, I.I. Strakovsky, R.L. Workman, Phys. Rev. C52, 2120 (1995).

[5] M.G. Fuda, Phys. Rev. C32, 2024 (1985).

[6] I.R. Afnan, B.C. Pearce, Phys. Rev. C35, 737 (1997).

[7] B.C. Pearce, I.R. Afnan, Phys. Rev. C40, 220, (1989).


