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1. Introduction

The study of hadron properties in nuclear medium is one of the current
topics in nuclear and hadron physics. For example, there have been many
speculations on the “mass shift” [1–8]. I have attached the quotation mark
here since the word is often misleading due to the lack of covariance in the
medium. To see the in-medium properties of a hadron, one has to measure
its energy, E, and momentum, p, separately and should not combine them
to form “invariant mass”, m∗, with E2 − p2 = m∗2.

The main issue here is how hadrons propagate in nuclear medium. I
would like to stress that it is important to distinguish between the coherent
propagation, in which the nuclear final state coincides with the initial state
as is often the case in exclusive experiments, and the incoherent propagation,
in which the nuclear final states are summed over as usually done in inclusive
experiments. I will also show that the distinction is important in discussing
the nuclear transparency and modeling the color transparency.
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2. Coherent and incoherent propagations

The coherent propagation is described by the usual Green’s function
defined by

G(A)
nn (x′, t′;x, t) = 〈A,n|T (ψ(x′, t′)ψ∗(x, t))|A,n〉 , (1)

where ψ(x, t) is the hadron field operator and |A,n〉 denotes a nuclear state.
It is a diagonal element with respect to nuclear states and satisfies the
Lippmann–Schwinger equation

G(A)
nn = G(0) +G(0)U (A)

nn G
(A)
nn , (2)

where U
(A)
nn is the optical potential. Most analyses have so far been restricted

to the nuclear ground state (n = 0). For infinite nuclear medium, G(∞) and
U (∞) are diagonal in momentum, p, and Eq. (2) can be solved in the form

G(∞)(p,E)−1 = G(0)(p,E)−1 − U (∞)(p,E) . (3)

The pole of G(∞) for a fixed p as a function of E is given by

G(∞)(p,E) = 0, (4)

and gives the dispersion relation,E(p), for the hadron in nuclear medium.
E(p) is generally complex and |G(∞)(p,E)|2 as a function of real E has a
peak at ReE(p) with the width −2ImE(p). In an exclusive experiment,
however, one cannot observe it in this manner since E is determined by
kinematics and cannot be changed freely.

In most of high energy experiments, nuclear final states are not observed
but summed over and the propagation should be considered as incoherent.
One now needs non-diagonal elements of G(A) as well as the diagonal ones
i.e.

G
(A)
n′n(x′, t′;x, t) = 〈A,n′|T (ψ(x′, t′)ψ∗(x, t))|A,n〉 , (5)

where a non-diagonal element can always be expressed as

G
(A)
n′n = G

(A)
n′n′T̃

(A)
n′n G̃

(A)
nn , (6)

with the reduced T-matrix and Green’s function, T̃
(A)
n′n and G̃

(A)
nn , which

involve no intermediate transition to n′. For infinite medium, the diagonal
elements are functions of E and p and an experimentally observable quantity
has the form

I(p,E) =
∑

n′

|G
(∞)
n′n′(p,E)|2Wn′δ(E + εn′ − Ei) , (7)
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where Ei is the initial energy and we have used Eq. (6) to factorize the diag-

onal elements G
(∞)
n′n′ . One sees that a different E picks up a different n′ and

thus, if G
(∞)
nn is only weakly n-dependent, the previously considered quan-

tity, |G(∞)(p,E)|2, becomes observable. Inclusive experiments may therefore
have better chance of offering direct information on the medium modification
of hadrons.

3. Nuclear transparency

The nuclear transparency is a measure of initial and/or final state in-
teractions of a hadron involved in a hard process (large Q2) and defined
generally by

TA(Q2) = σA(Q2)/AσN (Q2) . (8)

In the case of (e, e′N) on nuclei, where the incident electron is scattered by
a nucleus, A, changing its momentum from k to k′, emitting a nucleon with
a momentum, p, and leaving the residual nucleus, A − 1, in a state n, the
differential cross section for the exclusive process is given by

dσA(n)

dk′dp
= |〈k′; p;A− 1, n|T |k;A〉|2(2π)−5δ(Ef − Ei) . (9)

The scattered electron energy is usually integrated over and the measured
differential cross section is

dσA(n)

dΩdp
=

∫

dk′k′2
dσa(n)

dk′dp
. (10)

The nuclear transparency is defined by

TA(Q2; p, n) =

(

dσA(n)

dΩdp

)

exp

/

(

dσA(n)

dΩdp

)

PWIA

. (11)

The nucleon propagates coherently in this case and the final state interaction
is described by the optical potential. For a nucleon with a large enough
momentum, the Glauber approximation works very well and the nuclear
transparency is given by

TA(Q2; p, n) =

∫

drρA(r)P (−)
c (r, p) , (12)

where the survival probability of the scattered nucleon as it travels from the
struck point, r, to the nuclear surface is

P (−)
c (r, p) = exp(−σtot

NN

∞
∫

z

dz′ρA−1(z
′; b)) , (13)

with z axis taken in the direction of p and b is the transverse component of r.
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In an inclusive experiment, where the residual nuclear state, n, and the
emitted nucleon momentum, p, are summed over, the differential cross sec-
tion becomes

dσA

dΩ
=

∫

dp
∑

n

dσA(n)

dΩdp
, (14)

and the nuclear transparency is defined by

TA(Q2) =
dσA

dΩ

/

A
dσN

dΩ
. (15)

The Glauber expression of the transparency is the same as the previous one
except the nucleon-nucleon total cross section is replaced by the reaction
cross section [9, 10], i.e.

TA(Q2) =

∫

drρA(r)P
(−)
ic (r, q) , (16)

with the incoherent survival probability

P
(−)
ic (r, q) = exp



−σr
NN

∞
∫

z

dz′ρA−1(z
′; b)



 . (17)

We have used the transferred momentum,q, for the average of the summed
nucleon momenta and, as usual, q2 = −Q2.

We have compared the calculated transparencies with those extracted
from the SLAC experiment [11, 12]. The experimental condition is neither
exclusive nor fully inclusive and the experimental ones are actually sand-
witched between the calculated lines for the coherent and incoherent propa-
gations in the region of Q2 between 2 and 8 (GeV/c)2. There is thus no clear
indication of deviation from the conventional Glauber calculations, though
the large A, large Q2 data tend to become larger than the incoherent curves,
which show the maximum values in the conventional approach.

4. Modeling color transparency

Let us now examine how the internal dynamics of the hadron traveling
in nuclear medium affect the transparency. We again consider the case of
(e, e′N) and study the time evolution of the nucleon internal state after it
is struck by the electron at t = 0 [13].

The time evolution in the free space is described by the hamiltonian, H0,
and the nucleon with momentum, q, is its eigen-state, i.e.

H0|0, q〉 = Eq|0, q〉 . (18)
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The in-medium evolution is then described by

H(t) = H0 + V (t) , (19)

where V (t) is the interaction with the medium. Denoting the hard interac-
tion operator with the electron by J(q), we have for the relevant amplitude

M(q, t) =

〈

0, q|T exp



−i

t
∫

0

dt′H(t′)



 J(q)|0, 0

〉

, (20)

which gives the probability amplitude of the nucleon internal state to be in
the ground state with momentum q, |0, q〉, at time t after the interaction
with the electron at time 0. The amplitude reduces to the form factor times
a phase in free space ( V = 0 ),

M0(q, t) = 〈0, q|e−iH0tJ(q)|0, 0〉 = e−iEqtF (q) . (21)

We further note that, in the case of inert nucleon for which no internal
excitation is allowed, the time evolution is given by replacingH by its ground
state expectation value, 〈0, q|H|0, q〉, and we get the expression which is
equivalent to that given by the Glauber approximation with the replacement,
vqt→ z.

With the same replacement and introducing the nucleon survival ampli-
tude by the ratio

R(q, t) = M(q, t)/M0(q, t) , (22)

we obtain the nucleon survival probability with internal dynamics included
as

P (−)(q, r) = |R(q, t(r))|2 , (23)

where t(r) is the travelling time of the nucleon from the position, r, to
the nuclear surface. The nuclear transparency is then given by the same
expression as Eq. (12) and Eq. (16), i.e.

TA(Q2) =

∫

drρA(r)P (−)(q, r) . (24)

We have so far neglected the dynamics of nuclear medium. Even though the
nuclear excitation energies are small compared with the internal excitation
energies of the nucleon, the possibility of transition to various states other
than the ground state due to the interaction with the travelling nucleon
should not be neglected. Actually, the interaction, V , is a function of the
coordinates of nucleons in the medium and its time dependence is due to
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that of the relative coordinates between the travelling nucleon and those in
the medium. We can thus write the interaction as

V (t, ξ) = V (r1 − vqt, r2 − vqt, · · ·) , (25)

where ξ stands for the coordinates (r1, r2, · · ·). If the nuclear excitation
energies are small, we can use the fixed scatterer approximation and the
nucleon survival amplitude becomes a function of ξ. The nucleon survival
probability, P (−), which gives the nuclear transparency through Eq. (24), is
then obtained for the coherent case as

P (−)
c (q, r) = |

∫

dξ|ΨA(ξ)|2R(q, t(r), ξ)|2 , (26)

and for the incoherent case as

P
(−)
ic (q, r) =

∫

dξ|ΨA(ξ)|2|R(q, t(r), ξ)|2 . (27)

It is clear from these expressions that the incoherent transparency is always
larger than the coherent one. Actual evaluations of the multi-dimensional
integrals in these expressions are impossible and all the models of color
transparency so far proposed use the approximation corresponding to taking
the average neither of R, nor of |R|2 but of V . The interaction parameters
are then adjusted so that, for the inert nucleon, the result coincides with
the Glauber expression, either Eq. (12) for the coherent case or Eq. (16)
for the incoherent case. This prescription may take care of major effects of
nuclear dynamics but the approximation should be further examined since
the averages such as those appearing in Eq. (26) and Eq. (27) can give rise
to interesting phenomena.

In the following, we will use the same approximation to model the color
transparency [14]. The model we use for the nucleon internal dynamics is a
relativistic harmonic oscillator quark model [15,16] and the Hamiltonian,H0,
for a large momentum, q, is given by

H0 = |q| + M̂2/2|q| , (28)

where the mass operator, M̂ , is

M̂2 = η

3
∑

i=1

(p2
i + α2x2

i ) + C , (29)

with the center-of-mass part subtracted. The parameters, η, α and C, are
determined by the nucleon mass, its charge radius and the mass of the Roper
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resonance, which is identified as a first positive parity excited state in this
model. The interaction with the medium, V , is taken to be

V = −ic0

3
∑

i=1

x2
i⊥ , (30)

reflecting the idea of the color transparency that the interaction becomes
weak as the transverse size of the system decreases [17–20]. We assume a
purely absorptive interaction and the strength is adjusted so as to reproduce
the Glauber result for the inert nucleon, as mentioned previously. The hard
interaction operator, J(q), is chosen as

J(q) = exp(iqx1) exp(νq2
3

∑

i=1

x2
i⊥) , (31)

where the second factor is introduced to simulate the longitudinal-transverse
correlation in the internal dynamics, which is important in the problem of
color transparency but is absent in the harmonic oscillator model. In this
model, all the calculations can be done analytically and we get a closed
expression for the survival amplitude, R.

R(q, t) =
(1 − (α⊥−α+2νq2

α⊥+α−2νq2 )(α⊥−α
α⊥+α

))2

(1 − (α⊥−α+2νq2

α⊥+α−2νq2 )(α⊥−α
α⊥+α

)e
−i

η

|q|
2α⊥t

)2
e
−i η

|q|
2α⊥t

, (32)

where α⊥ is given by

α2
⊥ = α2 − i

2|q|c0
η

. (33)

We have calculated the survival amplitude and the nuclear transparency
with the interaction parameter, c0, corresponding to the incoherent case, for
several choices of the correlation strength, ν. I refer to our paper [14] for
the detailed description of the results and give here only its brief summary.
Compared with the Glauber calculation which coincides with the case of the
inert nucleon, the internal dynamics always increases the survival probability
and thus the nuclear transparency, and the effect becomes more conspicuous
as Q2 increases and also as the correlation strength, ν, increases. If we
compare our results with those of the SLAC experiments, we can probably
exclude the possibility of very strong correlation. However, the comparison
is based on the assumption that the experimental condition corresponds to
the incoherent case. If the condition is closer to the coherent case, the data
for heavy nuclei seem to indicate the color transparency and require the
strongest correlation in our model. It is therefore essential to clarify how
the nuclear final states are treated in the experiments. For theorists, the
calculations are clearer for the extreme cases, i.e. purely exclusive or fully
inclusive.
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5. Concluding remarks

I conclude my talk with a few remarks.
I wish to stress again that the coherent and the incoherent propagations

should be clearly distinguished in constructing models and in comparing
with experiments. The coherent propagation is described by the usual op-
tical potential but the direct observation of its effect in the form of the
strength function in an exclusive experiment is difficult due to kinematical
constraints. Such an observation is feasible in an inclusive experiment, if the
optical potential depends only weakly on nuclear states.

Distinguishing coherent and incoherent propagations is crucial in observ-
ing the on-set of the color transparency. In the case of (e, e′N) experiments,
the on-set seems sensitive to the longitudinal-transverse correlation in the
internal dynamics of the nucleon. Experiments with better statistics and
clearer kinematics would be most desirable.
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