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The part of the proton spin Σ carried by u, d, s quarks is calculated in
the framework of the QCD sum rules in the external fields. The operators
up to dimension 9 are accounted. An important contribution comes from
the operator of dimension 3, which in the limit of massless u, d, s quarks
is equal to the derivative of QCD topological susceptibility χ′(0). The
comparison with the experimental data on Σ gives χ′(0) = (2.3 ± 0.6) ×
10−3 GeV2. The limits on Σ and χ′(0) are found from selfconsistency
of the sum rule, Σ >∼ 0.05, χ′(0) >∼ 1.6 × 10−3 GeV2. The values of

gA = 1.37 ± 0.10 and g8

A
= 0.65 ± 0.15 are also determined.

PACS numbers: 12.38.Gc

In the last years, the problem of nucleon spin content and particularly
the question which part of the nucleon spin is carried by quarks, attracts a
strong interest. The valuable information comes from the measurements of
the spin-dependent nucleon structure functions g1(x,Q2) in deep inelastic
e(µ)N scattering (for the recent data see [2,3], for a review [4]). The parts
of the nucleon spin carried by u, d and s-quarks are determined from the
measurements of the first moment of g1(x,Q2)

Γp,n(Q2) =

1
∫

0

dxg1;p,n(x,Q2) . (1)

The data allows one to find the value of Σ — the part of nucleon spin carried
by three flavours of light quarks Σ = ∆u + ∆d + ∆s, where ∆u,∆d,∆s
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are the parts of nucleon spin carried by u, d, s quarks. On the basis of the
operator product expansion (OPE) Σ is related to the proton matrix element
of the flavour singlet axial current j0

µ5

2msµΣ = 〈p, s|j0
µ5|p, s〉 , (2)

where sµ is the proton spin 4-vector, m is the proton mass. The renormal-
ization scheme in the calculation of perturbative QCD corrections to Γp,n

can be arranged in such a way that Σ is scale independent.
An attempt to calculate Σ using QCD sum rules in external fields was

done in Ref. [5]. Let us shortly recall the idea. The polarization operator

Π(p) = i

∫

d4xeipx〈0|T{η(x), η̄(0)}|0〉 (3)

was considered, where

η(x) = εabc

(

ua(x)Cγµub(x)

)

γµγ5d
c(x) (4)

is the current with proton quantum numbers [6], ua, db are quark fields, a, b, c
are colour indeces. It is assumed that the term

∆L = j0
µ5Aµ , (5)

where Aµ is a constant singlet axial field, is added to QCD Lagrangian. In
the weak axial field approximation Π(p) has the form

Π(p) = Π(0)(p) + Π(1)
µ (p)Aµ. (6)

Π
(1)
µ (p) is calculated in QCD by OPE at p2 < 0, |p2| ≫ R−2

c , where Rc is the

confinement radius. On the other hand, using dispersion relation, Π
(1)
µ (p) is

represented by the contribution of the physical states, the lowest of which
is the proton state. The contribution of excited states is approximated as a
continuum and suppressed by the Borel transformation. The desired answer
is obtained by equalling of these two representations. This procedure can

be applied to any Lorenz structure of Π
(1)
µ (p) , but as was argued in [7,8],

the best accuracy can be obtained by considering the chirality conserving
structure 2pµp̂γ5 .

An essential ingredient of the method is the appearance of induced by
the external field vacuum expectation values (v.e.v). The most important
of them in the problem at hand is

〈0|j0
µ5|0〉A ≡ 3f2

0 Aµ (7)
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of dimension 3. The constant f2
0 is related to QCD topological susceptibility.

Using (5), we can write

〈0|j0
µ5|0〉A = limq→0 i

∫

d4xeiqx〈0|T{j0
ν5(x), j0

µ5(0)}|0〉Aν

≡ limq→0Pµν(q)Aν . (8)

The general structure of Pµν(q) is

Pµν(q) = −PL(q2)δµν + PT (q2)(−δµνq2 + qµqν) . (9)

Because of anomaly there are no massless states in the spectrum of the
singlet polarization operator Pµν even for massless quarks. PT,L(q2) also
have no kinematical singularities at q2 = 0 . Therefore, the nonvanishing
value Pµν(0) comes entirely from PL(q2). Multiplying Pµν(q) by qµqν , in the
limit of massless u, d, s quarks we get

qµqνPµν(q) = −PL(q2)q2 = N2
f (αs/4π)2i

∫

d4xeiqx

×〈0|TGn
µν(x)G̃n

µν(x), Gm
λσ(0)G̃m

λσ(0)|0〉 , (10)

where Gn
µν is the gluonic field strength, G̃µν = (1/2)εµνλσGλσ. (The anomaly

condition was used, Nf = 3.) Going to the limit q2 → 0, we have

f2
0 = −

1

3
PL(0) =

4

3
N2

f χ′(0), (11)

where χ(q2) is the topological susceptibility

χ(q2) = i

∫

d4xeiqx〈0|TQ5(x), Q5(0)|0〉 , (12)

Q5(x) = (αs/8π) Gn
µν(x)G̃n

µν(0) . (13)

As is well known (see, e.g., the review [9]), χ(0) = 0 if there is at least one
massless quark. The attempt to find χ′(0) itself by QCD sum rules failed:
it was found [5] that OPE does not converge in the domain of characteristic
scales for this problem. However, it was possible to derive the sum rule,
expressing Σ in terms of f2

0 (7) or χ′(0). The OPE up to dimension d = 7
was performed in Ref. [5]. Among the induced by the external field v.e.v.’s
besides (7), the v.e.v. of the dimension 5 operator

g〈0|
∑

q

q̄γα(1/2)λnG̃n
αβq|0〉A ≡ 3h0Aβ, q = u, d, s (14)
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was accounted and the constant h0 was estimated using a special sum rule,
h0 ≈ 3 × 10−4GeV4 . There were also accounted the gluonic condensate
d = 4 and the square of quark condensate d = 6 (both times the external
Aµ field operator, d = 1). However, the accuracy of the calculation was
not good enough for reliable calculation of Σ in terms of f2

0 : the necessary
requirement of the method — the weak dependence of the result on the
Borel parameter was not well satisfied.

In this paper we improve the accuracy of the calculation by going to
higher order terms in OPE up to dimension 9 operators. Under the assump-
tion of factorization — the saturation of the product of four-quark opera-
tors by the contribution of an intermediate vacuum state — the dimension
8 v.e.v.’s are accounted (times Aµ):

−g〈0|q̄σαβ
1
2λnGn

αβq · q̄q|0〉 = m2
0〈0|q̄q|0〉

2, (15)

where m2
0 = 0.8 ± 0.2 GeV2 was determined in [10]. In the framework of

the same factorization hypothesis the induced by the external field v.e.v. of
dimension 9

αs〈0|j
(0)
µ5 |0〉A〈0|q̄q|0〉

2 (16)

is also accounted. In the calculation we used the following expression for the
quark Green function in the constant external axial field [8]:

〈0|T{qa
α(x), q̄b

β(0)}|0〉A = iδabx̂αβ/2π2x4

+

(

1

2
π2

)

δab(Ax)(γ5x̂)αβ/x4 −
1

12
δabδαβ〈0|q̄q|0〉

+
1

72
iδab〈0|q̄q|0〉(x̂Âγ5 − Âx̂γ5)αβ

+
1

12
f2
0 δab(Âγ5)αβ +

1

216
δabh0

[

5

2
x2Âγ5 − (Ax)x̂γ5

]

αβ

. (17)

The terms of the third power in x-expansion of quark propagator propor-
tional to Aµ are omitted in (17), because they do not contribute to the ten-
sor structure of Πµ of interest. Quarks are considered to be in the constant
external gluonic field and quark and gluon QCD equations of motion are
exploited (the related formulae are given in [11]). There is also an another
source of v.e.v. h0 to appear besides the x-expansion of quark propagator
given in Eq. (17): the quarks in the condensate absorb the soft gluonic field
emitted by other quark. A similar situation takes place also in the calcula-
tion of the v.e.v. (16) contribution. The accounted diagrams with dimension
9 operators have no loop integrations. There are others v.e.v. of dimensions
d ≤ 9 particularly containing gluonic fields. All of them, however, corre-
spond to at least one loop integration and are suppressed by the numerical
factor (2π)−2. For this reason they are disregarded.
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The sum rule for Σ is given by

Σ + C0M
2 = −1 +

8

9λ̃2
N

em2/M2
{

a2L4/9 + 6π2f2
0 M4E1

(

W 2

M2

)

L−4/9

+14π2h0M
2E0

(

W 2

M2

)

L−8/9 −
1

4

a2m2
0

M2
−

1

9
παsf

2
0

a2

M2

}

. (18)

Here M2 is the Borel parameter, λ̃N is defined as λ̃2
N = 32π4λ2

N = 2.1 GeV6,
〈0|η|p〉 = λNvp, where vp is proton spinor, W 2 is the continuum threshold,
W 2 = 2.5 GeV2,

a = −(2π)2〈0|q̄q|0〉 = 0.55 GeV3 , (19)

E0(x) = 1 − e−x, E1(x) = 1 − (1 + x)e−x ,

L = ln(M/Λ)/ ln(µ/Λ), Λ = ΛQCD = 200 MeV and the normalization
point µ was chosen µ = 1 GeV. When deriving (18) the sum rule for
the nucleon mass was exploited what results in appearance of the first
term, -1, in the right hand side (rhs) of (18). This term absorbs the
contributions of the bare loop, gluonic condensate as well as αs correc-
tions to them and essential part of terms, proportional to a2 and m2

0a
2.

The values of the parameters, a, λ̃2
N ,W 2 taken above were chosen by the

best fit of the sum rules for the nucleon mass (see [12], Appendix B) per-
formed at Λ = 200 MeV. It can be shown, using the value of the ratio
2ms/(mu + md) = 24.4 ± 1.5 [13] that a(1 GeV) = 0.55 GeV3 corresponds
to ms(1 GeV) = 153 MeV. αs corrections are accounted in the leading
order (LO) what results in appearance of anomalous dimensions. Therefore
Λ has the meaning of effective Λ in LO. The unknown constant C0 in the
left-hand side (lhs) of (18) corresponds to the contribution of inelastic tran-
sitions p → N∗ → interaction withAµ → p (and in inverse order). It cannot
be determined theoretically and may be found from M2 dependence of the
rhs of (18) (for details see [12,14]). The necessary condition of the validity of
the sum rule is |Σ| ≫ |C0M

2|exp[(−W 2 + m2)/M2] at characteristic values
of M2 [14]. The contribution of the last term in the rhs of (18) is negligible.
The sum rule (18) as well as the sum rule for the nucleon mass is reliable
in the interval of the Borel parameter M2 where the last term of OPE is
small less than 10–15% of the total and the contribution of continuum does
not exceed 40–50% . This fixes the interval 0.85 < M2 < 1.4 GeV2. The
M2-dependence of the rhs of (18) at f2

0 = 3×10−2 GeV2 is plotted in Fig. 1.
The complicated expression in rhs of (18) is indeed an almost linear function
of M2 in the given interval! This fact strongly supports the reliability of the
approach. The best values of Σ = Σfit and C0 = Cfit

0 are found from the χ2
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Fig. 1. The M2-dependence of Σ + C0M
2 at f2

0
= 3 × 10−2 GeV2, Eq. (18),

g8

A
+ C8M

2, and gA − 1 + CAM2, Eq. (22).

fitting procedure

χ2 =
1

n

n
∑

i=1

[Σfit + Cfit
0 M2

i − R(M2
i )]2 = min, (20)

where R(M2) is the rhs of (18).
The values of Σ as a function of f2

0 are plotted in Fig. 2 together with
√

χ2. In our approach the gluonic contribution cannot be separated and

Fig. 2. Σ (solid line, left ordinate axis) and
√

χ2, Eq. (20), (crossed line, right

ordinate axis). as a functions of f2

0
.
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is included in Σ. The experimental value of Σ can be estimated [2,3] (for
discussion see [15]) as Σ = 0.3 ± 0.1. Then from Fig. 2 we have f2

0 =
(2.8 ± 0.7) × 10−2 GeV2 and χ′(0) = (2.3 ± 0.6) × 10−3 GeV2 . The error
in f2

0 and χ′ besides the experimental error includes the uncertainty in the
sum rule estimated as equal to the contribution of the last term in OPE
(two last terms in Eq.18) and a possible role of NLO αs corrections. At
f2
0 < 0.02 GeV2 χ2 is much worse and the fit becomes unstable. This allows

us to claim (with some care, however,) that χ′(0) ≥ 1.6 × 10−3GeV2 and
Σ ≥ 0.05 from the requirement of self consistency of the sum rule. The χ2

curve also favours an upper limit for Σ <∼ 0.6. At f2
0 = 2.8× 10−2 GeV2 the

value of the constant C0 found from the fit is C0 = 0.19 GeV−2. Therefore,
the mentioned above necessary condition of the sum rule validity is well
satisfied. Recently, the first attempt to calculate χ′(0) on the lattice was
performed [16]. The result is χ′(0) = (0.4 ± 0.2) × 10−3 GeV2, much below
our value. However, as mentioned by the authors, the calculation has some
drawbacks and the result is preliminary.

Let us discuss the role of various terms of OPE in the sum rules (18)
To analyze it we have considered sum rules (18) for 4 different cases, i.e.

when we take into consideration: (a) only contribution of the operators up to
d = 3 (the term-1 and the term, proportional to f2

0 in (18)); (b) contribution
of the operators up to d = 5 (the term ∼ h0 is added); (c) contribution of
the operators up to d = 7 (three first terms in (18)), (d) our result (18), i.e.

all operators up to d = 9. We choose for this analysis the most reasonable
value of f2

0 = 0.03 GeV2, but the conclusion we will come appears to be the
same for all more or less choice of f2

0 . Results of the fit of the sum rules
are shown in the Table I for all four cases. Fit is done in the region of
Borel masses 0.9 < M2

B < 1.3 GeV2. In the first column the values of Σ
are shown , in the second — values of the parameter C, and in the third —
the ratio γ = |

√

χ2/Σ|, which is the real parameter, describing reliability of
the fit. From the Table one can see, that reliability of the fit monotonically
improves with increasing of the number of accounted terms of OPE and is
quite satisfactory in the case (d).

TABLE I

case Σ C(GeV−2) γ

(a) -0.019 0.31 10−1

(b) 0.031 0.3 5.10−2

(c) 0.54 0.094 9.10−3

(d) 0.36 0.21 1.3 · 10−3
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From the same sum rule (18) it is possible to find g8
A — the proton cou-

pling constant with the octet axial current, which enters the QCD formula
for Γp,n [4]. There are two differences in comparison with (18):

1. Instead of f2
0 it appears the square f2

8 of the pseudoscalar meson
coupling constant with the octet axial current. In the limit of strict SU(3)
flavour symmetry it is equal to f2

π , fπ = 133 MeV. However, it is known,
that SU(3) symmetry is violated and the kaon decay constant, fK ≈ 1.25fπ.
In the linear in s-quark mass ms approximation fη = 1.31fπ. We put for f2

8
the value f2

8 = 2.6 × 10−2 GeV2, intermediate between f2
π and f2

η .

2. h0 should be substituted by m2
1f

2
π . The constant m2

1 is determined by
the sum rules suggested in [17]. A new fit corresponding to the values of the
parameters used above, was performed and it was found; m2

1 = 0.16 GeV2.
The M2-dependence of g8

A + C8M
2 is presented in Fig. 1 and the best

fit according to the fitting procedure (20) at 1.0 ≤ M2 ≤ 1.3 GeV2 gives

g8
A = 0.65 ± 0.15 , C8 = 0.10 GeV−2 ,

√

χ2 = 1.2 × 10−3 . (21)

(The error includes the uncertainties in the sum rule as well as in the
value of f2

8 .) The obtained value of g8
A within the errors coincides with

g8
A = 0.59 ± 0.02 [18] found from the data on baryon octet β-decays under

assumption of strict SU(3) flavour symmetry and contradicts the hypothesis
of bad violation of SU(3) symmetry in baryon axial octet coupling con-
stants [19].

A similar sum rule with the account of dimension 9 operators can be
derived also for gA — the nucleon axial β-decay coupling constant. It is an
extension of the sum rule found in [7] and has the form

gA + CAM2 = 1 +
8

9λ̃2
N

em2/M2

×

[

a2L4/9 + 2π2m2
1f

2
πM2 −

1

4
a2 m2

0

M2
+

5

3
παsf

2
π

a2

M2

]

. (22)

The main term in OPE of dimension 3 proportional to f2
π occasionally was

cancelled. For this reason the higher order terms of OPE may be more
important in the sum rule for gA than in the previous ones. The M2 depen-
dence of gA−1+CAM2 is plotted in Fig. 1, lower curve; the curve is almost
the straight line, as it should be. The best fit gives

gA = 1.37 ± 0.10, CA = −0.088 GeV−2,
√

χ2 = 1.0 × 10−3 (23)

in comparison with the world average gA = 1.260±0.002 [20]. The inclusion
of dimension 9 operator contribution essentially improves the result: without
it gA would be about 1.5 and χ2 would be much worse.
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