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The low energy virtual Compton scattering process eN → e′Nγ offers
a new and potentially high resolution window on nucleon structure via
measurement of so-called generalized polarizabilities (GPs). We present
calculations of GPs within heavy baryon chiral perturbation theory and
discuss present experimental efforts.
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1. (En)lightning real Compton review

The physics of (real) Compton scattering has received a good deal of
recent attention and it is useful, before plunging into the virtual case, to have
a quick review of some of the interesting issues in RCS. One of the primary
goals of contemporary particle/nuclear physics is to understand the structure
of the nucleon. Indeed this is being pursued at the very highest energy
machines such as SLAC and HERMES, wherein one probes the quark/parton
substructure, as well as at lower energy accelerators such as MAMI and
BATES, wherein one studies behavior of the nucleon in terms of a collective
three quark mode. In recent years one of the important low energy probes
has been Compton scattering, by which one can study the deformation of
the nucleon under the influence of quasi-static electric and/or magnetic fields

[1]. For example, in the presence of an external electric field ~E the quark
distribution of the nucleon becomes distorted, leading to an induced electric
dipole moment

~p = 4παE
~E (1)
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in the direction of the applied field, where αE is the electric polarizability.
The interaction of this dipole moment with the field leads to a corresponding
interaction energy

U = −
1

2
4παE

~E2 . (2)

Similarly in the presence of an applied magnetizing field ~H there will be in
induced magnetic dipole moment and interaction energy

~µ = 4πβM
~H, U = −

1

2
4πβM

~H2 . (3)

For wavelengths large compared to the size of the system, the effective Hamil-
tonian for the interaction of a system of charge e and mass m with an elec-
tromagnetic field is, of course, given by the simple form

H(0) =
(~p − e ~A)2

2m
+ eφ . (4)

As the energy increases, however, one must also take into account polariz-
ability effects and the effective Hamiltonian becomes

Heff = H(0) −
1

2
4π(αE

~E2 + βM
~H2) . (5)

The Compton scattering cross section from such a system (taken, for sim-
plicity, to be spinless) is then given by

dσ

dΩ
=

(αem

m

)2 ( ω

ω′

)2
[
1

2
(1 + cos2 θ) −

mωω′

αem
[
1

2
(αE + βM )(1 + cos θ)2

+
1

2
(αE − βM )(1 − cos θ)2 + . . .] , (6)

where αem is the fine structure constant and ω, ω′ are the initial, final pho-
ton energies respectively. It is clear from Eq. 6 that careful measurement of
the differential scattering cross section allows extraction of these structure
dependent polarizability terms provided that (i) the energy is large enough
that such terms are significant compared to the leading Thomson piece and
(ii) that the energy is not too large that higher order corrections become
important. In this way the measurement of electric and magnetic polariz-
abilities for the proton has recently been accomplished using photons in the
energy range 50 MeV < ω < 100 MeV, yielding [2]

αp
E = (12.1±0.8±0.5)×10−4fm3, βp

M = (2.1∓0.8∓0.5)×10−4fm3 . (7)

From these results, which say that the polarizabilities of the proton are
nearly a factor of a thousand smaller than the corresponding nucleon volume,
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we learn that the nucleon is a rather rigid object when compared to the
hydrogen atom, for example, wherein the electric polarizability and volume
are comparable.

Additional structure probes are possible if we exploit the feature of nu-
cleon spin [3]. Thus, for example, the presence of a time varying electric field
in the plane of a rotating system of charges will lead to a charge separation
and induced electric dipole moment

~p = −γ1
~S ×

∂ ~E

∂t
(8)

with corresponding interaction energy

U1 = −~p · ~E = γ1
~E · ~S × (~∇× ~B) , (9)

where we have used the Maxwell equations in writing this form. (Note that
the “extra” time or spatial derivative is required by time reversal invariance
since ~S is T-odd.) Similarly other possible structures are

U2 = γ2
~B · ~∇~S · ~E, U3 = γ3

~E · ~∇~S · ~B, U4 = γ4
~B · ~S × (~∇× ~E) (10)

and the measurement of these various “spin-polarizabilities” γi via polarized
Compton scattering provides a rather different sort of probe for nucleon
structure. Because of the requirement for polarization not much is known at
present about such spin-polarizabilities, although from dispersion relations
the combination [4]

γp
0 ≡ γp

1 − γp
2 − 2γp

4 ≈ −1.34 × 10−4fm4 (11)

has been calculated and from a global analysis of unpolarized Compton data,
to which it contributes in higher orders, one has determined the so-called
backward polarizability to be [5]

γπ = γ1 + γ2 + 2γ4 = (27.7 ± 2.3 ± 2.5) × 10−4fm4 . (12)

Clearly such measurements represent an important goal for the future.

2. Virtual Compton scattering: formalism

Recently a new frontier in Compton scattering has been opened (see,
e.g., [6, 7]) and is in the beginning of being explored: the study of the elec-
tron scattering process ep → e′p′γ in order to obtain information concerning
the virtual Compton scattering (VCS) process γ∗N → γN . As will be dis-
cussed below, in addition to the two kinematical variables of real Compton
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scattering — the scattering angle θ and the energy ω′ of the outgoing pho-
ton — the invariant structure functions for VCS [8], [9] depend on a third
kinematical variable—the magnitude of the three-momentum transfer to the
nucleon in the hadronic c.m. frame, q̄ ≡ |~q|. The VCS amplitude can then,
as shown by [9], be characterized in terms of structure coefficients having
q̄ dependence and are called “generalized polarizabilities” (GPs) of the nu-
cleon in analogy to the well-known polarizability coefficients in real Compton
scattering. (However, due to the specific kinematic approximation chosen
in [9] there is no one-to-one correspondence between all the real Compton
polarizabilities and the GPs of Guichon et al. in VCS [9–11].)

The advantage of VCS lies in the virtual nature of the initial state photon
and the associated possibility of an independent variation of photon energy
and momentum, thus rendering access to a much greater variety of structure
information than in the case of real Compton scattering. For example, one
can hope to identify the individual signatures of specific nucleon resonances
in the various GPs, which cannot be obtained in other processes [6]. In this
regard, it should be noted that a great deal of theoretical work has taken
place and predictions for both spinindependent and spindependent GPs are
available within a non-relativistic constituent quark model [9] and a one-loop
calculation in the linear sigma model [12]. In addition, various approaches
have been used to calculate the two spin-independent polarizabilities ᾱE(q̄2)
and β̄M (q̄2), namely, an effective Lagrangian approach including nucleon
resonance effects [13], our calculation of the leading q̄2 dependence in heavy-
baryon ChPT (HBChPT) [14] and a calculation of ᾱE(q̄2) in the Skyrme
model [15]. For an overview of the status at higher energies and in the deep
inelastic regime we refer to [6].

The GPs of the nucleon are defined in terms of electromagnetic multi-
poles as functions of the initial photon momentum q̄ [9],

P (ρ′L′,ρL)S(q̄2) =

[

1

ω′Lq̄L
H(ρ′L′,ρL)S(ω′, q̄)

]

ω′=0

,

P̂ (ρ′L′,L)S(q̄2) =

[

1

ω′Lq̄L+1
Ĥ(ρ′L′,L)S(ω′, q̄)

]

ω′=0

, (13)

where L (L′) denotes the initial (final) photon orbital angular momentum, ρ
(ρ′) the type of multipole transition (0 = C (scalar, Coulomb), 1 = M (mag-
netic), 2 = E (electric)), and S distinguishes between non-spin-flip (S = 0)

and spin-flip (S = 1) transitions. Mixed-type polarizabilities, P̂ (ρ′L′,L)S(q̄2),
have been introduced, which are neither purely electric nor purely Coulomb
type. It is important to note that the above definitions are based on the
kinematical approximation that the multipoles are expanded around ω′ = 0
and only terms linear in ω′ are retained, which together with current con-
servation yields selection rules for the possible combinations of quantum
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numbers of the GPs. In this approximation, ten GPs have been introduced
in [9] as functions of q̄2: P (01,01)0, P (11,11)0 , P (01,01)1 , P (11,11)1 , P (01,12)1 ,

P (11,02)1 , P (11,00)1 , P̂ (01,1)0 , P̂ (01,1)1 , P̂ (11,2)1 .
However, recently it has been proved [10, 11] using crossing symmetry

and charge conjugation invariance that only six of the above ten GPs are
independent. Then in the scalar (i.e. spin-independent) sector it is conve-

nient to eliminate the mixed polarizability P̂ (01,1)0 in favor of P (01,01)0 and
P (11,11)1, because the latter are generalizations of the electric and magnetic
polarizabilities in real Compton scattering:

ᾱE(q̄2) = −
e2

4π

√

3

2
P (01,01)0(q̄2) , β̄M (q̄2) = −

e2

4π

√

3

8
P (11,11)0(q̄2) . (14)

However, in the spin-dependent sector it is not a priori clear which three
GPs should be eliminated with the help of the C-constraints.

3. Chiral calculation of generalized polarizabilities

As stated above, there have been a number of theoretical approaches
to calculation of the generalized polarizabilities in addition to the heavy
baryon chiral perturbative study reported below. An advantage of the lat-
ter, however, is that it is guaranteed to satisfy all field theory constraints
such as crossing symmetry, charge conjugation invariance, etc. In addition,
the calculation at O(p3) of nucleon electric and magnetic polarizabilities for
the case of real Compton scattering is know to be in agreement with ex-
periment, so one hopes that the same may hold for the GPs. Indeed the
diagrams are the same. Only the kinematics is different — instead of the
usual RCS variables ω′, θ, there is an additional variable |~q|, the center of
mass momentum of the incident virtual photon in the VCS case. We have
evaluated the GPs using the standard formalism of HBχPT and have ob-
tained closed form expressions for each.

We analyze the VCS process using the standard chiral perturbation the-
ory Lagrangian in the heavy baryon formulation to O

(

p3
)

in the nucleon
sector [16, 17],

Lχ
πN = L

(1)
πN + L

(2)
πN + L

(3)
πN , (15)

with

L
(1)
πN = N̄v(iv · D + gAS · u)Nv ,

L
(2)
πN = −

1

2M
N̄v

{

D · D − (v · D)2

−
1

2
εµνρσvρSσ

[

fµν
+ (1 + 4c6) + 2v(s),µν (1 + 2c7)

]

}

Nv − [Sµ, Sν ][D
µ,Dν ]
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L
(3)
πN =

1

2M2
N̄v

{[

fµν
+

(

c6 +
1

8

)

+ v(s),µν

(

c7 +
1

4

)]

× εµνρσSσiDρ + h.c.

}

Nv , (16)

where ε0123 = 1. Here we keep those terms which contribute to a O
(

p3
)

VCS
calculation. In particular terms linear in the photon fields, which vanish in
our gauge, have been omitted. The definitions of symbols used in Eq. (16)
are standard and can be found, e.g. in Ref. [16].

Explicit forms for each of the GPs can be found in Ref. [18]. Here for
space reasons we quote only the generalized electric and magnetic polariz-
abilities

ᾱ
(3)
E (q̄) =

e2g2
Amπ

64π2F 2
π

4 + 2 q̄2

m2
π

−
(

8 − 2 q̄2

m2
π

− q̄4

m4
π

)

mπ

q̄
arctan q̄

2mπ

q̄2
(

4 + q̄2

m2
π

) ,

β̄
(3)
M (q̄) =

e2g2
Amπ

128π2F 2
π

−
(

4 + 2 q̄2

m2
π

)

+
(

8 + 6 q̄2

m2
π

+ q̄4

m4
π

)

mπ

q̄
arctan q̄

2mπ

q̄2
(

4 + q̄2

m2
π

) .

(17)

The meaning of these forms can be found by expanding

ᾱ
(3)
E (q̄) =

5e2g2
A

384π2F 2
πmπ

[

1 −
7

50

q̄2

m2
π

+
81

2800

q̄4

m4
π

+ O(q̄6)

]

,

β̄
(3)
M (q̄) =

e2g2
A

768π2F 2
πmπ

[

1 +
1

5

q̄2

m2
π

−
39

560

q̄4

m4
π

+ O(q̄6)

]

. (18)

We see then that at the real photon point — q̄ = 0 — one reproduces the
usual chiral forms

αE(0) = 10βM (0) =
αg2

A

48πF 2
π mπ

= 12.2 × 10−4fm3 (19)

in good agreement with experiment. New are the predictions for the q̄ depen-
dence. In the case of the electric polarizability there is nothing unexpected
— one sees a gradual fall-off with momentum transfer corresponding to a
size ∼1 fm. However, in the magnetic case, there is a surprise — the general-
ized magnetic polarizability is predicted to rise before reaching a maximum
at q̄ ∼ 100 MeV and then falling. This behavior is given only in chiral
models, and indicates the presence of contributions to the local magnetic
polarizability of opposite sign. However, it is not clear at present what the
physical origin of this effect might be. In any case it will be interesting to
look for experimentally, as it distinguishes chiral models from constituent
quark predictions.
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4. Experimental possibilities

Of course, calculation of the generalized polarizabilities is only really
interesting to the extent that such quantities can be confronted with experi-
mental data. The challenges here are great. The problem is firstly that such
effects are relatively small. In the case of RCS, for example, the interference
of of the polarizability terms in the cross section gives at most ∼ 10% mod-
ifications to the cross section at a photon energy of 100 MeV. However, at
this energy one must already worry about modifications also coming from
terms in the effective Lagrangian of order ω4, which are estimated using
dispersive methods. The same is true of generalized polarizabilities. These
are not large effects. However, the problem is much worse. In the case of
RCS, the primary background comes from Thomson scattering. However,
in the case of VCS, the basic reaction is ep → e′pγ, which means that one is
sensitive both to the sought-for e, e′ spectator-γ∗p → γp reaction as well as
to p, p′ spectator-γ∗e → γe, i.e. the Bethe–Heitler process, wherein the final
photon is radiated from either the initial or final state electron. Because of
the lightness of the electron this bremsstrahlung process is very important
and generally dominates the cross section unless one chooses the kinematic
region carefully. In addition, the entire process is quite sensitive to radiative
corrections, which must be calculated quite precisely [7].

Despite these difficulties, several groups have taken up the experimental
challenge. In the case of an experiment mounted at MAMI data taking
has already taken place [19] and it looks as if the group will be able to
extract values for the generalized polarizabilities. The basic problem in this
regard is that in-plane kinematics were employed, meaning that the (e, e′)
and (p, p′) planes were parallel. In this case the Bethe–Heitler reaction
produces two blow-torch-like peaks in the differential scattering cross section
corresponding to radiation from either the initial or final state electron and
the desired GP effects are small perturbations. The careful measurements
of this group has been able to verify the basic correctness of the radiative
correction calculations and can reproduce the data by a sum of Bethe–Heitler
and nucleon Born diagram terms. The effect of the GPs is calculated to be
about 10% in the backward direction (i.e. when the photon is emitted
opposite to the electron directions).

A different approach has been taken by an approved BATES experiment
by the OOPS collaboration [20]. In this case the use of the movable OOPS
spectrometers allow an experiment to be performed at perpendicular ori-
entation of the electron and proton planes, whereby the influence of the
Bethe–Heitler forward peaks is minimized. Theoretically one expects the
Born and Bethe–Heitler contributions to make roughly equal contributions
so that any additional effect from generalized polarizabilites should be pos-
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sible to see. Alternatively an approved CEBAF measurement expects to get
around the problem of Bethe–Heitler backgrounds by a different route [21].
Even though employing parallel kinematics, the use of the higher CEBAF
beam energy means that the experiment can be performed at a larger value
of longitudinal polarization — ε ≈ 0.95. In this case, the larger virtual
photon flux, which scales as 1/(1− ε) means that the VCS contribution will
be corresponding magnified and calculations reveal possible 20-30 % effects
coming from GPs.

In addition to these experiments a great deal of work is focussing also on
higher energies and momentum transfers where one may be able to sort out
the basic and angular momentum and spin structure of the nucleon itself [6].
At the present time then the VCS glass is not only full — it is overflowing!
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