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We propose a method for the calculation of vacuum expectation values
(VEVs) given a non-trivial, long-distance vacuum wave functional (VWF)
of the kind that arises, for example, in variational calculations. The VEV
is written in terms of a Schrödinger-picture path integral, then a local
expansion for (the logarithm of the) VWF is used. The integral is regulated
with an explicit momentum cut-off, Λ. The resulting series is not expected
to converge for Λ larger than the mass-gap but studying the domain of
analyticity of the VEVs allows us to use analytic continuation to estimate
the large-Λ limit. Scalar theory in 1 + 1 dimensions is analyzed, where (as
in the case of Yang-Mills ) we do not expect boundary divergences.

PACS numbers: 25.40.Ve

1. Introduction

The use of the Schrödinger picture in field theory provides a natural
framework for non-perturbative calculations based on ansätze for the vac-
uum wave functional (VWF). Although the Yang-Mills VWF has been an-
alyzed numerically by lattice simulations [1, 2] and analytical approxima-
tions [3–5], it is an open problem to compute VEVs with such a VWF be-
cause we have to address the calculation of non-Gaussian path integrals.
One way to systematically compute the path integral

∫

Dφ A[φ] |Ψ0[φ]|2 (1)
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would be to expand Ψ0[φ] about a Gaussian, so we can use Wick’s theorem
to obtain the VEV. In principle, this would involve a perturbation expan-
sion with (dressed) propagators and an infinite number of non-local vertices
with increasing dependence on high momenta. Within perturbation theory,
it can be explicitly shown that these diagrams will not generate new diver-
gences other than the ones which are substracted by renormalization [6].
Outside perturbation theory we may encounter divergences (which will have
to cancel when we resum the expansion) due to the fact that the Gaussian
term (around which we expand) does not damp the high momentum modes
strongly enough. We will show how to compute such a path integral by per-
forming a further expansion in terms of local expressions. Therefore, we will
give a method to compute finite VEVs, from a given Ψ0[φ], by expanding
the logarithm of Ψ0[φ] in power of φ and its derivatives (and considering
the quadratic term in φ as the unperturbed part). Notice that now (if we
compute an equal-time VEV) the |Ψ0[φ]|2 can be interpreted as the expo-
nential of (minus) a euclidean local action (which lives in the quantization
surface t = 0) with an infinite number of (non-renormalizable) terms which
apparently generate ultra-violet divergences. These arise because the path
integral includes configurations with momentum far beyond the convergence
radius of our local expansion. In [6] we have argued that that (provided the
theory has a mass-gap) the convergence radius of the local expansion is non-
zero and finite. Therefore, we introduce an explicit cut-off, Λ, on the Fourier
components of the field configurations of Eq. (1). Now the equal-time VEV
of an operator can be computed from the Ψ0-local expansion, provided Λ
is smaller than the convergence radius. Of course, we want to send Λ to
infinity. In [6] we have studied the domain of analyticity of the (equal-time)
VEVs as functions of this cut-off and used it to compute the Λ → ∞ value by
analytic continuation. The particular method chosen for the continuation is
not essential, although the procedure should be suitable for numerical analy-
sis. We found to be most convenient a method related to Borel resummation
(which itself is commonly used to re-sum asymptotic series). We will discuss
the method in the context of scalar theory in 1 + 1 dimensions and we will
give an example based on perturbation theory (where we can check it).

2. Analyticity in the Schrödinger cut-off

In [7] it was shown that for Yang-Mills theory Ψ0[A(x/
√

s)/
√

s], is ana-
lytic in the cut s-plane with the cut in the negative real axis. The same holds
for scalar theory [6]. This analyticity of the scaled VWF provides a method
to recover the full Ψ0[φ] from its functional Taylor expansion around slowly
varying configurations. This analyticity can be extended to scaled equal-
time VEVs [6], so they can be reconstructed from the resummation of a
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perturbation expansion (the expansion parameter will be Λ/m, with m the
mass scale which appears in the chosen VWF and which will be related to
the energy spectrum)generated by locally expanding the VWF.

For scalar theory in 1 + 1 dimensions, we have shown [6] that

K(s) = sn/2〈Ψ0|A[φ̃(
p√
s
)]|Ψ0〉 Λ√

s

(2)

is analytic in the cut s-plane, with the cut going from s = −Λ2 to s = 0
(and with n being a integer number). We will recover K(1) (which gives an
approximation to the VEV if Λ is large enough) by analytic continuation
from s = ∞ (where a local expansion can be used) to s = 1. The method
for the analytic continuation is based on constructing a function, I(λ), from
K(s):

I(λ) =
1

2πi

∫

C

ds
eλ(s−1)

s − 1
K̃(

pi√
s
,

Λ√
s
). (3)

The integration contour C is shown in Fig. 1 together with the [−Λ2, 0] cut.

Fig. 1. Large radius contour for the integral I(λ).

A local expansion of the VWF will give a series in pk

K̃ =
∑

k

ak
1

√
s
k

=
∑

k

bk
1

(s − 1)k
, (4)

which has been rearranged in a series in 1/(s − 1)n, so the Eq. (3) will give

I(λ) =
∑

n

bn
λn

n!
. (5)

It is shown in [6] (by collapsing the contour to an infinitesimal circle around
s = 1 and a contribution from the cut, which will be damped by the expo-
nential term) that the λ → ∞ limit of Eq. (3) gives the VEV:

K̃(pi, Λ) = lim
λ→∞

I(λ) = lim
λ→∞

∑

n

bn
λn

n!
. (6)
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Because we expect that the convergence radius of Eq. (5) will be infinite [6],
we can obtain an approximation for I(∞) by truncating the (alternating)
series at N terms, and taking λ as large as is consistent with this. In practice
this means that we take bNλN/N ! to be a small fraction of the value of the
truncated sum. We have to assume that the function I(λ) does not have
a plateau at finite λ, which could incorrectly indicate that the I(∞) limit
has been reached (and therefore the truncated approximant would give the
value of I(λ) at the plateau, instead of I(∞)). We may instead estimate
I(∞) by looking at the point where the approximant (a polynomial in λ) is
stationary, then we have to assume that I(λ) has no stationary point other
than the one at λ → ∞.

3. Example

In this section we will illustrate how to compute the, equal-time, two-
point function in a 1 + 1-dimensional scalar theory model where the VWF
is given, for slowly varying configurations, by

|Ψ0|2 = N exp

(

−1

2

∫

φ̃φ̃(α0+

α2p
2 + · · ·) − 1

4!

∫

φ̃φ̃φ̃φ̃(β0 + β2

∑

i

p2
p + · · ·)

)

. (7)

And we assume that this VWF has a sensible UV limit (high frequency
modes for the configurations), so the analyticity of the VEV (which was
proven in [6] for the true vacuum) also would hold here. We write the
(connected) two-point function for small momenta as

〈Ψ0|φ̃(p)φ̃(−p)|Ψ0〉 = c0 + c2p
2 + · · · (8)

the coefficients c0 and c2 can be computed by performing a perturbation
expansion with a small cut-off Λ. They will be given by a series in Λ. In
Fig. 2 we give the result of the computation of c0 and c2 until order O(Λ5)
and O(Λ2p2) respectively.

2

2 2

1 1

2 2

1 1

c  =

c  =0

Fig. 2. Diagrams for the lowest Λn terms of c0 and c2.
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Where the propagators are 1/α0, the momenta insertion (denoted by a
dot) are −α2q

2 and the dotted vertex with arrow is β2q
2 (the arrow shows

where the momentum is sitting). In φ4 theory at first order in perturbation
theory, the VWF has a good UV limit [6] and the VEV analyticity holds.
The values for the α0, α2, β0 and β2 are given by

α0 = 2m ,

α2 = (m − m

12π

g

m2
)

1

m2
,

β0 =
m

2

g

m2
,

β2 = −m

16

g

m2

1

m2
, (9)

and the Fig. 2 gives for c0

1

2m
− 1

32πm

g

m2

Λ

m
+

1

128πm

g

m2

Λ3

m3
+

1

m
O(

g2

m4

Λ5

m5
) , (10)

and after resummation

c0 =
1

2m
− 1.88

32πm

g

m2
(11)

to be compared with

c0 =
1

2m
− 2

32πm

g

m2
. (12)

We need to go to the next order in Λ in order to be able to give a resummed
value for c2. Finally, in [6] we have shown that α0 6= 0 provided φ̇(0)|0〉 6= 0.

4. Conclusion

We have shown how to compute VEVs by using a local expansion of the
true VWF within the context of scalar theory in 1 + 1 dimensions, where
no extra counterterms are needed (this feature is also shared by Yang-Mills
theory in 3 + 1 dimensions). In [6] we have shown how the analyticity
properties of the true vacuum in the cut-off, Λ, can be used to recover the
VEV from a series in positive powers of Λ (which is the usual output of a local
expansion of the VWF). If we want to use a variational ansatz for the VWF,
we will have to asssume (or prove) that its short distance behaviour is such
that the Λ → ∞ is finite and, furthermore, that the analyticity behaviour of
VEVs in Λ is preserved (so we can use the analytic continuation). We have
given a diagrammatic approach to compute the first terms of a series in Λ
for a VEV in the scalar theory, which (after our resummation) will give the
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Λ → ∞ value of the VEV. We expect that this method can be generalized
to Yang-Mills theories in 3 + 1 dimensions where, in the strong coupling
limit, we expect to have a local VWF and therefore use the resummation to
compute the VEV of a large Wilson loop.
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