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Elementary particle resonances have been systematically analyzed us-
ing all available experimental data. We have come to the conclusion that
resonance decay product momenta and masses of resonances are to be quan-
tized. The Balmer-like formula for mass distribution of elementary particle
resonances has been obtained. These observations allow us to formulate a
strategy of experimental searches for new resonances and systematize the
already known one.

PACS numbers: 12.40. Yx

One of the most remarkable corner-stones for foundation of quantum
theory was the Balmer formula for the spectrum of a hydrogen atom. This
formula was obtained phenomenologically from experimental observations.
It allowed Bohr to reproduce the spectrum of hydrogen atom and his re-
sults coincide with those following from quantum mechanics. We note the
well-known fact that Bohr solved the problem of quantization of a hydro-
gen atom in 1913 long before the creation of quantum theory. Sommerfeld
generalized Bohr’s results to the relativistic case. Bohr and Sommerfeld
formulas are precise. Here, we want to demonstrate that the Balmer-like
formula for the mass distribution of elementary particle resonances and ex-
cited states of nucleons can be obtained from a systematic analysis of all
available experimental data and is based on the fundamental conservation
law of energy-momentum and the Bohr–Sommerfeld quantization rule. We
will consider the foregoing statements in detail [1].

∗ Presented at the NATO Advanced Research Workshop, Cracow, Poland, May 26–30,
1998.

(2493)



2494 F.A. Gareev et al.

Relativistic elementary particles are classified according to the continu-
ous unitary irreducible projective representations of the Poincaré group P.
The eigenvalues m2 and j(j+1) of invariant operators of P uniquely charac-
terize these representation spaces of the Poincaré group. Thus, elementary
particles are characterized by two parameters m2 and j(j +1) interpreted as
mass and spin, corresponding to the generators PM and JMν of the Poincaré
group. Those generators accord to momentum and angular momentum op-
erators. However, distinctions between the notions of the momentum and
angular momentum are conventional. In the space with constant curvature,
for example, these notions are indistinguishable. Indeed, the translation on
the sphere is also rotation. The equivalence between two types of motion
is established via the constant of dimensionality of length — radius of the
sphere.

Analysis of the procedure of quantizing some classical systems shows
that the SU(2) group plays a fundamental role in the process of quantization.
Remembering the known isomorphism between the SO(4) and SU(2) groups,
which within vector–parametrization of the SO(4) group is given by:

T [SO(4)] =
(1 + â+)(1 + b̂−)
√

(1 + ~a2)(1 +~b2)
= T+(~a)T−(~b) , (1)

we can also obtain the geometrical interpretation of this process. For that
purpose let us define the generators of the SO(4) group ~M = [~r × ~p], ~N =

r4~p−~rp4. Linear combinations of these orthonormal operators ~M± = ( ~M ±
~N) form two sets of generators of the SU(2) group. Thus, the SU(2) group
generates the action on the three-dimensional sphere S3. This action consists
of the translation with whirling around the direction of translation. Now as
an example, let us recall the Schrödinger–Coulomb problem where the SO(4)
symmetry is used to obtain the spectrum of a hydrogen atom. In that case,
the operator N accepts the form of the normalized Runge–Lenz vector

~A = (−2mH)−1/2

(

~r

r
+ (2mα)−1( ~M × ~p − ~p × ~M)

)

. (2)

The eigenvalues of the Schrödinger–Coulomb problem follow directly from
the invariant operator (Casimir operator) of SU(2) by writing the Hamilto-
nian as

H =
1

2((( ~M ± ~A), ~σ) + 2~)2
→ −mc2 α2

2(n + 1)2
, n = 0, 1, 2, ... ; (3)

these eigenvalues (including degeneracy) are given by standard group theo-
retical arguments.
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The operator ~N on S3 can be written as ~N = R~p + ~r(~r~p)/R, where
R is the radius of the sphere. Comparing this vector with the normalized
Runge–Lenz vector we find for hydrogen atom

Rn =
n2

α2me2
= n2R0 . (4)

The mass spectrum formula, which we are using here, is based on top
model of elementary particles. According to this concept quantum top equa-
tions have to be formulated on S3 [2]. So, formulation of the Hamiltonian
purely in terms of the generators of the SU(2) group is achieved. We get

H =
1

2mR2
{2~ + ( ~M±, ~σ)}{2~ + ( ~M±, ~σ)} , (5)

where ~M± = ( ~M ± ~N).
The spectrum of H may easily be found

HΨn =
~

2

2mR2
(n + 1)2 Ψn, n = 0, 1, 2, ... . (6)

The discreteness of the energy spectrum is a consequence of the compact-
ness of the group SU(2), the space of which is that space of solutions. When
R → ∞, the Hamiltonian tends to the Hamiltonian of the Pauli equation. In
this case ~M±/R = ( ~M ± ~N)/R → ±~p, and H =→ 1

2m(~p, ~σ)2. This Hamilto-
nian at the classical level corresponds to spherical symmetrical classical top
Hamiltonian on S3: H = J2/2I, where I is the moment of inertia.

Now let us generalize this concept to the relativistic case by generalizing
the Pauli equation to the Dirac equation. This procedure can be displayed
by the following scheme:

2mH =
(~σ ~M + 2~)

R

(~σ ~M + 2~)

R

→

(

HD

c
− mc

)(

HD

c
+ mc

)

= (~σ ~M + 2~)2

→ Det

(

HD

c − mc ~σ ~M± + 2~

~
σ ~M± + 2~

HD

c + mc

)

= 0

→
HD

c
Ψ± =

(

~α
~M±

R
+ βmc + γ5

2~

R

)

Ψ±, γ5 =

(

0 I
I 0

)

.(7)

The spectrum of this Hamiltonian may be found by taking into account (6).
We find the following formula for the spectrum of (7)

E = c

√

m2c2 +
~2(n + 1)2

R2
, n = 0, 1, 2, ... . (8)
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From a physical point of view, it is clear that formula (8) will correspond to
the properties of a classical top. Indeed, at the classical limit we obtain

E =
c

R

√

m2c2R2 + J2 . (9)

We will consider decay channels of resonances consisting of two decay
products. Taking into account (7)–(8) we suggest the following operator for
the mass spectrum formula for resonances

M(R) =

√

m2
a +

1

R2
((~σ ~M) + 2~)2 +

√

m2
b +

1

R2
((~σ ~M) + 2~)2 , (10)

where ma and mb are masses of decay products of the resonance, R is the
characteristic length of the group of resonances. The spectrum of this oper-
ator is obviously given by

Mn =
√

m2
a + P 2

n +
√

m2
b + P 2

n , (11)

where Pn = nP1, P1 = ~/R.
Some of the resonances have a dominant decay channel, and we suppose

that the momentum of this channel must manifest itself in decays properties
through other channels. Let us consider a few dominant decay channels of
the resonances: Ξ− → Λπ− with fraction 99.887 ±0.035%, Ξ(1530)0 →
Ξ−π+ with fraction 100%, Σ0 → Λγ with fraction 100%, Σ− → nπ− with
fraction 99.848 ± 0.005%.

The masses of heavier resonances were calculated by formula (11) where
m1, m2 and P1 are the masses and momenta of decay products from one
of the dominant channels cited above. The results of our calculations and
the corresponding experimental data [3] are illustrated in Fig. 1. Here we
presented only the fragment of our calculations. More complete analysis you
can find in the paper [4]. The X-axis characterizes the families of resonances
(baryonic or mesonic) and the Y -axis represents their masses (in MeV).
The figure shows that momenta P1 to be proposed generate the families of
resonances with different quantum numbers. We think that the results given
in the figure convincingly demonstrate the empirical fact that resonance
decay product momenta and their masses are quantized independently on
the type of interaction between resonance decay products, quantum numbers
of resonances, and the type of particles. There arises an excellent possibility
of predicting new resonances and verifying masses of the existing ones.

It seems [1] that a system of resonators corresponds to stable systems
(like proton), when all the frequencies of a system of resonators are ideally co-
ordinated and equal to each other or are commensurable. In other words, all
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Fig. 1. The mass distribution of baryonic and mesonic resonances with momenta

multiples of 74.39 MeV/c. The basic momentum was taken from the channel

Σ0 → Λγ.

channel motions in stable systems are exactly synchronous. The same con-
clusion was obtained by Gryzinski [5] that the atom can remain in stationary
state if motion in the whole atom is perfectly synchronic. Let us consider
how our approach allows one to investigate internal structure of nucleons.
The excited states of nucleons have been investigated in a large number of
experiments. The main information about the masses, widths and elastici-
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ties for N and ∆ resonances comes from the partial-wave analysis of Nπ, Nη,
ΛK and ΣK data sets (for details see [3]). We would like to propose that the
properties of the ground state of a nucleon can be studied from experiments
aimed at extracting information about excited states of nucleons. The pro-
ton is practically stable (mean lifetime τ > 1.6∗1025 years — independently
of the decay mode [3]). It can decay via different channels. For example,
p → e+π0, p → µ+γ, p → νK∗(892)+, p → e+K∗(892)0... But the proton
does not decay despite the possibility from the energy-momentum conser-
vation law. We decided to investigate some of these channels, for example,
p → νK∗(892)+ and p → e+K∗(892)0. The masses of p, ν, K∗(892)+, e+

and K∗(892)0 are known. So we are able to calculate the decay momen-
tum P1 and then to evaluate the masses of excited states of a proton using
formula (11) where m1, m2 are the masses of hypothetical decay particles
(ν, K∗(892)+, e+ and K∗(892)0) and P1 is the momentum of their relative
motion. The results of our calculations and the corresponding experimen-
tal data [3] are illustrated in Fig. 2. The X-axis characterizes the families
of resonances and the Y -axis represents their masses (in MeV). The figure
shows that momenta P1 to be proposed also generate the families of reso-
nances with different quantum numbers and confirms our conclusion that
resonance decay product momenta and their masses are quantized.

The well-known results in high-energy physics indicate that there is a
profound connection between spins and masses of strongly interacting ele-
mentary particles, hadrons. The spin J of some baryons and mesons appears
to be nearly proportional to the square of their mass M : M2 ∝ J . The cor-
relation between spin and mass of experimentally known low mass hadrons is
represented by a straightline Regge trajectory. The general formula, which
connects the maximal spin J and mass M of heavy hadrons, was obtained
in [6] by using simple arguments of dimensional analysis and similarity prin-
ciple

J = ~(M/mp)
1+1/ζ , (12)

where mp is the proton mass, the number ζ takes values ζ=1, 2, 3 and
characterizes the spatial dimensionality of hadrons.

The plot [6] lg J versus lg M for astrophysical bodies shows a remark-
able regularity, and the theoretical lines describe not only the shape, but
also absolute values in tremendous mass and spin intervals (the mass inter-
val is about 34 orders of magnitude, the corresponding interval for angular
momenta covers about 60 orders of magnitude) without invoking arbitrary
parameters. Therefore, Muradian’s approach incorporates in a natural way
fundamental quantum mechanical constants ~ and mp. It is worthwhile to
note that the Regge-like trajectories can be obtained from (11) by using the
Bohr–Sommerfeld quantization conditions Pr = n~ ≡ J and the assump-
tion that the masses of a ζ-dimensional rotational object can be written in
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Fig. 2. The mass distribution of baryonic resonances with momenta multiples of

45.52 MeV/c (top Fig.) and 41.22 MeV/c (bottom Fig.). The basic momentum

was taken from the hypothetical channel of a proton p → νK∗(892)+ (top Fig.)

and p → e+K∗(892)0 (bottom Fig.)

the form m = ρrζ , where ρ is the constant density of the object. Therefore,
equation (11) acquires the form

M =
√

m2 + P 2/c2 =
√

(ρrζ)2 + J2/c2r2 . (13)

The minimization of this expression over r provides Regge-like trajecto-
ries. These results are remarkable because the observed and well-established
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Regge-like trajectories in micro- and macrosystems were obtained from first
principles.

In conclusion, we would like to say that the above presented method
is able to describe the existing experimental data with high accuracy. It
was clearly demonstrated that information about the inner structure of a
nucleon can be extracted using experimental data for excited nucleon states.
An excellent possibility of predicting new resonances and verifying masses
of existing ones arises in any case. So, we have established the Balmer-
like parameter-free formula for masses of elementary particle resonances in
accordance with the systematic analysis of experimental data. Interest in our
results is not only in their closeness to the experimental data, but also in the
derivation of formula (11) from the two invariants: the conservation law of
energy-momentum and the Ehrenfest adiabatic invariant (Bohr–Sommerfeld
quantization rule).

The authors would like to thank the Russian Foundation for Basic Re-
search for financial support of our work (grant 96-02-17216).
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