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The experimental information presently available on the σ-nucleon-
N∗(1440) coupling constant is briefly discussed and the large uncertainty in
this quantity is emphasized. We show that measurements of the associate
photoproduction of a vector meson (ρ- or ω-meson) and of the Roper re-
sonance off proton targets near threshold could provide direct information
on the strength of the scalar–isoscalar excitation of the N∗(1440) and hence
on the magnitude of the σNN∗(1440) coupling.
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1. Introduction

The Roper resonance, the N∗(1440), is the first excited state of the
nucleon. It has the same quantum numbers as the nucleon, spin 1/2, isospin
1/2 and positive parity. It is therefore expected that the N∗(1440) will be
excited by the action of a scalar–isoscalar field on the nucleon. In effective
hadronic field theories, the strength of this excitation will be characterized
by the σNN∗(1440) coupling. We address the question of the magnitude of
this coupling.

The value of gσNN∗ , the σNN∗(1440) coupling constant, and the expres-
sion describing the associated form factor are of interest for various issues.
As a consequence of its rather low excitation energy, the N∗(1440) reso-
nance can play a role as virtual intermediate state in nuclear dynamics.
For example, a repulsive three-nucleon interaction can be generated by the
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π- and σ-exchange (or by the π- and ω-exchange) components of the nucleon-
nucleon interaction with an intermediate N∗(1440) [1]. The magnitude of
this interaction is directly determined by the values of gσNN∗ and gωNN∗ .
The decay vertices of the Roper resonance are also important to understand
the very nature of the resonance. The low excitation energy, the positive
parity and the large width of the N∗(1440) are very hard to accommodate
in the framework of constituent quark models based on harmonic confin-
ing potentials. This led to the introduction of anharmonic interactions [2]
or of collective excitations, such as breathing modes of bag surfaces [3, 4].
Implementing chiral symmetry in quark models has been shown to help in
understanding the energy of the Roper resonance: chiral boson exchange
interactions can produce the correct ordering of positive and negative parity
states in the baryon spectrum, in particular the observed mass difference be-
tween the N∗

1/2
−
(1535) and the N∗

1/2
+(1440) [5]. The partial decay widths of

the N∗(1440) are stringent tests of these models. Finally, a recent coupled-
channel calculation for pion–nucleon scattering, involving πN , π∆ and σN
channels, indicates that the Roper resonance could be explained as a dy-
namical effect [6]. The σN channel plays a particularly important role in
this interpretation.

In Section 2, we review briefly the available experimental data on the
σNN∗(1440) vertex and show the large uncertainty associated with the cor-
responding coupling constant, gσNN∗ . Section 3 is devoted to a presentation
of a new approach to study the strength of the σNN∗(1440) coupling, the as-
sociate photoproduction of a vector meson (ρ- or ω-meson) and of the Roper
resonance off proton targets near threshold. These processes are computed
in the meson-exchange model of Ref. [7]. We conclude in Section 4.

2. The σ-nucleon-N∗(1440) coupling

In the Particle Data Group [8], the N∗(1440) has a width of (350± 100)
MeV. It has three observed strong decay channels: Nπ(60÷ 70%), ∆π(20÷
30%) and N(ππ)I=S=0 (5 ÷ 10%).

The effective σ degree of freedom describes the propagation of two pions
in the scalar-isoscalar channel. The gσNN∗ coupling constant is therefore re-
lated to the partial decay width of the N∗(1440) in the N(ππ)I=S=0 channel.
This relation is not simple because it depends explicitly on the σ mass, which
is a model-dependent quantity. We describe the σNN∗(1440) coupling by
the interaction Lagrangian,

L σNN∗ = g σNN∗ ΨN∗ σ ΨN + h.c. , (1)

and use the prescription of Ref. [1] for the σ mass. Taking Γ [N∗(1440) →
N(ππ)I=S=0] = 35 MeV, one gets g2

σNN∗/4π ≃ 0.1 [1]. We shall also need
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the πNN∗(1440) coupling. We use the pseudoscalar form,

L πNN∗ = −ig πNN∗ ΨN∗ γ5 ~π ~τ ΨN + h.c. . (2)

Taking Γ [N∗(1440) → Nπ] = 210 MeV, one obtains g 2
πNN∗/4π = 9.6.

An effective value for gσNN∗ has also been derived recently from data [9]
on the excitation of the Roper resonance in the inelastic scattering of α par-
ticles off proton targets [10]. The reaction α + p → α + X is studied for
incident α particles of 4.2 GeV. Missing energy spectra are measured at small
angles (0.8, 2.0, 3.2 and 4.1◦) [9]. The dominant processes contributing to
the reaction are found to be the excitation of the ∆ resonance in the pro-
jectile (followed by the emission of a pion) and the excitation of the Roper
resonance in the target. The latter process is described by the exchange of
a σ-meson between the incident α particle and the proton target [10]. In
order to reproduce the missing energy spectrum at 0.8◦, the σNN∗(1440)
coupling constant has to be quite large. The value corresponding to the best
fit is g2

σNN∗/4π = 1.33 with a form factor FσNN∗ = (Λ2
σ − m2

σ)/(Λ2
σ − q2),

where Λσ = 1.7 GeV [10]. Clearly, the σNN∗(1440) coupling needed in
this case is much stronger than inferred from the partial decay width of
the N∗(1440) in the N(ππ)I=S=0 channel. As remarked by the authors
of Ref. [10], their σ-exchange interaction could simulate other exchanges
of isoscalar character. It could also be that the strength observed in the
missing energy spectrum around the position of the Roper resonance, af-
ter subtraction of the ∆ background, should not be attributed entirely to
the N∗(1440). The analysis of more exclusive experiments is in progress.
Preliminary data on the p(d, d′)N∗ reaction at incident deuteron energies
of 2.3 GeV, where the excitation of the ∆(1232) and of the N∗(1440) are
separated by the detection of the decay proton, seem to indicate that the
excitation of the Roper resonance predicted using the parameters of Ref. [10]
is larger than the observed cross-section [11]. The value used for g2

πNN∗/4π
in these analyses is 5.5.

In the next section, we will discuss the associate photoproduction of a
vector meson and of the Roper resonance off proton targets, using both sets
of coupling constants, the weak σNN∗(1440) coupling derived from the par-
tial decay width of the N∗(1440) in the N(ππ)I=S=0 channel and the strong
σNN∗(1440) coupling needed to reproduce the missing mass spectrum mea-
sured for the α + p → α + X reaction.

3. The γ p → ω N∗(1440) and γ p → ρ0 N∗(1440) reactions

The presently available data on the photoproduction of ω- and ρ0-mesons
off proton targets near threshold (Eγ ≤ 2 GeV) can be described at low
momentum transfers (| q2 |≤ 0.5÷0.6 GeV2) by a simple one-meson exchange
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model [7]. Charge conjugation invariance forbids the exchange of vector
mesons in this approximation. The cross section for the γ p → ω p and γ p →
ρ0 p reactions comes therefore entirely from π- and σ-exchanges. The γ p →
ω p cross section can be understood as coming entirely from π-exchange while
the γ p → ρ0 p reaction is dominated by σ-exchange [7]. At higher energies,
typically for Eγ > 2.5 GeV (i.e. ∼ 1.5 GeV above threshold), these cross
sections develop a large diffractive component. The Roper resonance having
the same quantum numbers as the nucleon, one can try to use a similar
model to describe the γ p → ω N∗(1440) and γ p → ρ0 N∗(1440) reactions
close to threshold and at low q2. The γ p → ρ0 N∗(1440) cross section in this
kinematic regime would therefore be a very good measure of the strength
of the σNN∗(1440) coupling while the γ p → ω N∗(1440) reaction would
provide constraints on the π-exchange contribution.

The one-boson exchange contributions to the γ p → ω N∗(1440) and
γ p → ρ0 N∗(1440) reactions in the Vector Dominance Model are shown in
Figs 1 and 2 respectively.
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Fig. 1. Diagrams contributing to the γ p → ω N∗(1440) cross section in the one-

boson exchange model
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Fig. 2. Diagrams contributing to the γ p → ρ0 N∗(1440) cross section in the one-

boson exchange model

We consider first the γ p → ω N∗(1440) process (Ethreshold
γ = 2.16 GeV)

and follow closely the discussion of Ref. [7]. We expect the σ-exchange di-
agram to be completely negligible. It was already very small in the case of
the γ p → ω p reaction because the ωσγ coupling is much weaker than the
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ωπγ coupling [7]. In the case of the associate excitation of the N∗(1440),
the σNN∗(1440) coupling is also much smaller than the σNN coupling
(g2

σNN∗/4π = 0.1 ÷ 1.33 and g2

σNN/4π ≃ 8) while the πNN∗(1440) and
πNN couplings are comparable (g 2

πNN∗/4π = 9.6 and g 2

πNN/4π = 14).
We calculate therefore the differential cross section dσ/dq2 for the γ p →
ω N∗(1440) reaction assuming π-exchange only. We describe the ωπγ cou-
pling as in Ref. [7] and use for the πNN∗(1440) vertex the coupling constant
g 2

πNN∗/4π = 9.6 and the form factor

F πNN∗ =
Λ2

π − m2
π

Λ2
π − q2

,

where Λπ = 0.7 GeV. The result for Eγ = 2.5 GeV is shown in Fig. 3.
The expected domain of validity of the model is seen to be quite limited:
the lowest value of | q2 | at this energy (corresponding to θ = 0◦) is
0.36 GeV2 and the cutoff values restrict the applicability of the one-pion
exchange model to q2 ≤ 0.5 ÷ 0.6 GeV2.
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Fig. 3. Differential cross section for the γ p → ω N∗(1440) cross section in the

one-pion exchange model

We turn now to the γ p → ρ0 N∗(1440) reaction. We calculate in this
case both the π- and σ-exchange contributions shown in Fig. 2 for Eγ = 2.5
GeV. We describe the ρ0π0γ and of the ρ0σγ vertices as in Ref. [7] and
we use the two sets of coupling constants discussed in Section 2 for the
πNN∗ and σNN∗ vertices. The result obtained with the weak σNN∗(1440)
coupling (g2

σNN∗/4π = 0.1, g2

πNN∗/4π = 9.6, Λσ = 1 GeV, Λπ = 0.7 GeV)
is displayed in Fig. 4. If we take instead the strong σNN∗(1440) coupling
(g2

σNN∗/4π = 1.33, g2

πNN∗/4pi = 5.5, Λσ = 1.7 GeV, Λπ = 0.7 GeV),
we obtain the differential cross section shown in Fig. 5. It is an order of
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magnitude larger than with the weak σNN∗(1440) coupling and completely
dominated by the σ-exchange.
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Fig. 4. Differential cross section for the γ p → ρ0 N∗(1440) cross section in the

(π + σ)-exchange model using the weak σNN∗(1440) coupling (see text).
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Fig. 5. Differential cross section for the γ p → ρ0 N∗(1440) cross section in the

(π + σ)-exchange model using the strong σNN∗(1440) coupling (see text).

4. Conclusion

We have shown that the combined study of the γ p → ω N∗(1440) and
γ p → ρ0 N∗(1440) reactions close to threshold, and at low q2, could be of
interest to provide constraints on the πNN∗(1440) and σNN∗(1440) cou-
plings. A more detailed discussion of these processes and of their energy
dependence will be published elsewhere [12].



How Large is the σ-Nucleon-N∗(1440) Coupling Constant? 2507

The author is very much indebted to Berthold Schoch who suggested the
work presented in this paper in relation with an experimental project at the
Bonn ELSA Facility. She also acknowledges very helpful discussions with
Marcel Morlet and Dan Olaf Riska.

REFERENCES

[1] S.A. Coon, M.T. Peña, D.O. Riska, Phys. Rev. C52, 2925 (1995).

[2] N. Isgur, G. Karl, Phys. Rev. D19, 2653 (1979).

[3] T.A. DeGrand, C. Rebbi, Phys. Rev. D17, 2358 (1978).

[4] G.E. Brown, J.W. Durso, M.B. Johnson, Nucl. Phys. A397, 447 (1983).

[5] L.Ya. Glozman, D.O. Riska, Phys. Rep. 268, 263 (1996).

[6] C.Schütz et al., Phys. Rev. C57, 1464 (1998).

[7] B. Friman, M. Soyeur, Nucl. Phys. A600, 477 (1996).

[8] Review of Particle Properties, Phys. Rev. D54, 1 (1996).

[9] H.P. Morsch et al., Phys. Rev. Lett. 69, 1336 (1992).

[10] S. Hirenzaki, P. Fernández de Córdoba, E. Oset, Phys. Rev. C53, 277 (1996).

[11] S. Hirenzaki et al., in preparation.

[12] M. Soyeur, in preparation.


