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RELATIVITY DAMPS OPEP IN NUCLEAR MATTER
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Using a relativistic Dirac–Brueckner analysis the OPEP contribution
to the ground state energy of nuclear matter is studied. In the study the
pion is derivative-coupled. We find that the role of the tensor force in the
saturation mechanism is substantially reduced compared to its dominant
role in a usual nonrelativistic treatment. We show that the damping of
derivative-coupled OPEP is actually due to the decrease of M∗/M with
increasing density. We point out that if derivative-coupled OPEP is the
preferred form of nuclear effective Lagrangian nonrelativistic treatment of
nuclear matter is in trouble. Lacking the notion of M∗ it cannot replicate
the damping. We suggest an examination of the feasibility of using pseu-
doscalar coupled πN interaction before reaching a final conclusion about
nonrelativistic treatment of nuclear matter.

PACS numbers: 12.39.Pn, 11.10.Ef

The one pion exchange potential, OPEP, in momentum space is given
by the expression:
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∗ Presented at the NATO Advanced Research Workshop, Cracow, Poland, May 26–30,
1998. The talk is based on a recent paper written by Tjon and myself [1].
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by the expression:
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where the last term is the tensor force and

S12 = 3~σ1 · r̂~σ2 · r̂ − ~σ1 · ~σ2

is the tensor operator. In a Hartree–Fock calculation in nuclear matter
the δ(~r) potential is capable of contributing at saturation density, ρ0 ≃
1
2
m3

π, as much as ∼ 20MeV. But we must ignore it as it will be wiped
out by the short-range correlation. The Yukawa potential and the tensor
force contribute a mere ≃ −2MeV. Really important contributions of the
tensor force come from second and higher orders. The large matrix element,
〈3D1 | S12 |3 S1〉 =

√
8, shown in the matrix below,

S2
12 = 8 − 2S12.

|3 S1〉 |3 D1〉

〈3S1 | 0
√

8

〈3D1 |
√

8 −2

is responsible for this feature.
The effect of the tensor force and its dominance in nonrelativistic nu-

clear physics are seen most dramatically from the following results for the
deuteron [2]

〈Deuteron | Vcentral | Deuteron〉 ∼ 0 ,

2〈3D1 | Vtensor |3 S1〉 ∼ −22MeV ,

〈Deuteron | ~p2

2M
| Deuteron〉 ∼ +20MeV .

In a nonrelativistic Bethe–Brueckner calculation of nuclear matter one
finds typically [3]

〈NMatter | Vπ | NMatter〉nonrelativistic ∼ −34 (ρ/ρ0)
0.45 MeV . (1)
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The exponent of the density ρ is markedly less than the nominally expected
value of 1 because of Pauli blocking.

Relativistic nuclear physics is heavily based on summing Bethe–Salpeter
ladders using some form of Blankenbecler–Sugar–Logunov–Tavkhelidze [5]
prescription to obtain quasipotentials. In general quasipotentials are not
simply described by tree graphs with dressed vertices. The OPEP is an
exception. Other terms have the characteristics of four-point functions. In
practice, one uses OBEP forms with form factors for approximate represen-
tation of quasipotentials. The parameters are fixed by fitting NN data.

The relativistic results for the contribution of Vπ to the deuteron [6] is

〈Deuteron | Vπ | Deuteron〉relativistic = −22MeV,

suggesting an equally important role of the pion. In sharp contrast, this
seems not to be the case in a relativistic treatment of nuclear matter.

Strong scalar (S) and vector (V ) fields of the order of a few hundred
MeV are typical for relativistic theories [7–9] based on a meson theoretical
description of the nuclear force. These values are consistent with expecta-
tions based on the studies of scattering of ∼ 1 GeV protons by nuclei. The
large scalar fields have far reaching consequences in nuclear matter through
the strongly medium modified nucleon mass M∗ = M + S. The satura-
tion mechanism is believed to rest upon the decrease of magnitude of S
with increasing density. Of course, in a Mean Field Theory (MFT) like the
QHD [10] it is the only possible mechanism for saturation.

The contributions of a particular meson exchange potential, Vα, to the
binding energy can be calculated using the Hellmann–Feynman theorem

〈NMatter | Vα | NMatter〉 = g2
αNN

∂

∂ g2
αNN

(E/A). (2)

We find the following for the pion field contribution to E/A:

〈NMatter | Vπ | NMatter〉relativistic ∼ −20 (ρ/ρ0)
0.16 MeV. (3)

From this we see that the pion contribution is considerably suppressed com-
pared to the value given by Eq. (1) for the nonrelativistic case. We will
make clear that the suppression of OPEP is generic and not particular to
the present calculation. Furthermore, OPEP has only a minor role in the
saturation mechanism. This is exhibited in Fig. 1 where we plot our cal-
culated results of E/A (curve a) and E/A − 〈NM | vπ | NM〉 − 17MeV
(curve b). The two curves have practically the same density dependence
verifying that OPEP contributes little to the saturation mechanism. The
subtraction of 17 MeV in curve b makes the scale more compact.
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Fig. 1. Plots of the Dirac–Brueckner predictions of E/A (curve a) and

E/A−〈NM | vπ | NM〉−17 MeV (curve b).

The preceding numbers confirm the belief that in a relativistic treatment
of nuclear matter the tensor force does not have the dominant role that it has
in the usual nonrelativistic treatment. The radically different explanations
of the saturation mechanism in nonrelativistic and relativistic studies of
nuclear matter constitute a puzzling issue. A valid nonrelativistic treatment
must reproduce the main physics of a valid relativistic treatment in leading
order in v/c. Although the issue is a longstanding one, no resolution of it has
been given to date. We have addressed this question. A Dirac–Brueckner
(D–B) analysis [7, 8] is at present the best tool we have for a relativistic
study of nuclear matter. We examine here the role of derivative-coupled
OPEP in D–B and show that it is substantially reduced due to relativity.
Since the contribution of OPEP to the deuteron binding energy remains
large in a relativistic treatment the damping in nuclear matter must be due
to many-body effects. We find that it can be attributed to the decrease of
M∗/M with increasing density.

The above results can be understood qualitatively by examining the sec-
ond order contributions to the G-matrix. Keeping only the positive energy
M∗ state contributions in the intermediate states we have,

〈~p′ | G(P ) | ~p〉 = 〈~p′ | V (P ) | ~p〉 +
∑

λ,i

∫

d3k

(2π)3

×〈~p′ | V (P ) | ~k〉 1

M∗

QPauli

(~p/M∗)2 − (~k/M∗)2 +∆/M∗

〈~k | V (P ) | ~p〉. (4)
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The tensor force contributes mainly to the second term of Eq. (4) which
makes the structure of the two-nucleon propagator important. Normally the
boson masses in OBEP provide the scales for momenta in nuclear physics.
But here we notice that the two-nucleon propagator provides a new scale,
viz., M∗. To exploit this new scale let us introduce dimensionless momenta,
~ℓ = ~p/M∗, ~n = ~k/M∗, etc., and exhibit a few OBEP matrix elements in
terms of these.

σ Exchange

〈~p | vσ | ~k〉 = − g2
σ

(~p− ~k)2 +m2
σ

= − 1

M∗ 2

g2
σ

(~ℓ− ~n)2 + (mσ/M∗)2
. (5)

π Exchange (Derivative Coupling)

〈~p | vdc
π | ~k〉 = (

gπ

2M
)2~τ1 · ~τ2

~σ1 · (~k − ~p)~σ2 · (~k − ~p)

(~p − ~k)2 +m2
π

= (
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)2

1
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(
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2
)2~τ1 · ~τ2

~σ1 · (~ℓ− ~n)~σ2 · (~ℓ− ~n)

(~ℓ− ~n)2 + (mπ/M∗)2
. (6)

π Exchange (Pseudoscalar Coupling)

〈~p | vγ5

π | ~k〉 = (
gπ

2M∗
)2~τ1 · ~τ2

~σ1 · (~k − ~p)~σ2 · (~k − ~p)

(~p− ~k)2 +m2
π

=
1

M∗ 2
(
gπ

2
)2~τ1 · ~τ2

~σ1 · (~ℓ− ~n)~σ2 · (~ℓ− ~n)

(~ℓ− ~n)2 + (mπ/M∗)2
. (7)

Notice the differences in the M∗ factors. The derivative-coupled pion-
exchange potential has an extra damping factor of (M∗/M)2 relative to the
sigma-exchange potential. It is reasonable to expect that the M∗/M factor
suppresses derivative-coupled OPEP, Pauli coupled ρ, etc.

No such damping factor is present for the pseudoscalar coupled pion-
exchange potential. To our knowledge all published relativistic nuclear mat-
ter calculations have used derivative-coupling. Of course, the reason is well-
known. The pair suppression problem is automatically taken care of with
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TABLE I

Table of M∗ factors for various OBEP potentials. The number of stars in the 2nd

column indicates the importance of the OBEP in nuclear interaction.

Parity Importance Boson Scaling Factor

E * * * σ (1/M∗)2

V * * * ω Dirac (1/M∗)2

E ρ Dirac (1/M∗)2

N δ (1/M∗)2

O * * π Der. Coupled (M∗/M)2(1/M∗)2

D * ρ Pauli (M∗/M)2(1/M∗)2

D η Der. Coupled (M∗/M)2(1/M∗)2

-* ω Pauli (M∗/M)2(1/M∗)2

use of derivative-coupling. We will proceed as if derivative-coupling is cor-
rect. A discussion of pseudoscalar coupling vs. derivative-coupling follows
at the end of the talk.

The M∗/M suppression is corroborated in more detail by the following
calculation. Let us modify the S obtained from the self-consistent D–B
calculation by multiplying it with the factor α ≤ 1 thus generating a M∗ =
M+αS. By using the modified scalar self-energy in the nucleon propagators
we recalculate first the G-matrices and then E/A and finally 〈NMatter | Vπ |
NMatter〉 using Eq. (2). Only the α = 1 analysis is self consistent; others
are not. But such a calculation is particularly suitable to exhibit the role of
M∗/M on the OPEP contribution. Figure 2 exhibits clearly the damping
due to decreasing M∗/M . We stress that the mechanism of damping is
generic to any relativistic treatment using derivative-coupled pion and not
particular to either Ref. [8] or the use of Ref. [5].

We want to be careful that the present work not be interpreted as provid-
ing support for MFT. Results of calculations of E/A using the same interac-
tion, namely, that of Ref. [8], in both D–B and MFT treatments are shown
in Fig. 3. We see that the results are distinctly different. Such differences
are found in the results for scalar and vector fields in the two treatments.
Results obtained upon using the intearction of Ref. [8] are listed below.

SD−B = −306 (ρ/ρ0)
0.81 MeV,

VD−B = 233 (ρ/ρ0)
0.97 MeV,

SMFT = −358 (ρ/ρ0)
0.92 MeV,

VMFT = 295 (ρ/ρ0)MeV .
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Fig. 2. Plots of 〈NM | Vπ | NM〉 with the parameters of Ref. [8]. In the G-matrix

calculations S is replaced with αS. The plots are for α = 0., 0.5 and 1.0. The last

one is the result of a D–B self-consistent calculation. The other two are not self

consistent.
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Fig. 3. Plots of E/A from a Dirac–Brueckner and a MFT calculation with the same

quasipotential.
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Undoubtedly, if one releases oneself from the constraint of fitting NN
data and freely chooses the NN interaction one can obtain proper bind-
ing and saturation of nuclear matter with a MFT calculation.The results
presented in this talk are the first explicit calculations showing that in the
relativistic treatment the tensor force contributions generated by derivative-
coupled OPEP1 are reduced in size in nuclear matter. Because of this, in
complete contrast to the nonrelativistic situation, they cease to play an es-
sential role in the saturation mechanism. The reduction of the tensor force
contributions is principally due to the relativistic M∗/M effect. But even
the reduced role of OPEP is not negligible in the actual saturation properties
of nuclear matter. As noted, it contributes −20MeV to E/A. The dominant
mechanism of saturation of nuclear matter is basically very different in the
two approaches. In the nonrelativistic approach it is the density-dependent
reduction due to Pauli blocking of the attraction from tensor force, while
in the relativistic approach it is the reduction of the rate of growth with
increasing ρ of the attraction from the scalar field relative to the growth of
repulsion from the vector field.

Finally, let us discuss the issue of derivative versus pseudoscalar πN cou-
pling. If the former is the correct coupling for nuclear effective Lagrangian
then nonrelativistic treatment of nuclear matter appears not to be valid. On
the other hand, if a pseudoscalar coupling Lagrangian can be found which
gives satisfactory results for nuclear matter the nonrelativistic treatment
may be valid. Unfortunately there are no published results for nuclear mat-
ter with a pseudoscalar coupling Lagrangian. Needless to say, before doing
any nuclear matter calculation the parameters must be fixed by fitting NN
data.

It is useful to remind ourselves that we have been dealing with quasipo-
tentials. These are still constrained to be chiral invariant. The interaction
Lagrangians with which one could reproduce the quasipotentials via tree
graphs with form factors are listed below.

Lderivative coupling
π N =

gπ

2M
ψ̄γ5γ

µ~τψ · ∂µ~π + gσψ̄σψ. (8)

Lγ5 coupling
π N = gπψ̄[σ + iγ5~τ · ~π]ψ. (9)

In the derivative-coupling Lagrangian the nucleon fields are unaffected
by chiral transformation and the scalar field σ is a chiral singlet. In the pseu-
doscalar coupling Lagrangian the nucleon fields, ψ and ψ̄, belong to chiral
(1/2, 0), (0, 1/2) representations, while σ and ~π form chiral (1/2, 1/2) rep-
resentations. In Table II we list the parameters for two derivative-coupling
Lagrangians, namely, Amorim–Tjon [8] and Bonn C [9]. The last line gives

1 Pauli ρ tensor force is also damped.
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TABLE II

Amorim–Tjon and Bonn C parameters for derivative-coupling and standard pseu-

doscalar coupling parameters. The value of mσ is not specified.

Coupling Source Isospin mσ gσ mπ gπ

in MeV in MeV

Derivative Amorim-Tjon [8] 570 7.6 138 14.2

Bonn C [9] 1 550 8.6 138 14.2
0 720 17.6 138 14.2

Pseudoscalar ? ? 138 14.2

the standard pseudoscalar coupling Lagrangian parameters. Notice that
both the mass and the coupling constant of the σ meson have been left
unspecified. The reason is that, quite unlike OPEP, there will be consid-
erable modification of the one-σ exchange potential as one goes from the
form given by the original Lagrangian to the quasipotential. This happens
through two distinct mechanisms. First, the σ couples to the pion clouds of
each of the pair of interacting nucleons. Second, a pair of interacting pions
are exchanged between two nucleons. The interaction must be isovector in
the two-pion t-channnel2. The prospect of a pseudoscalar Lagrangian suc-
ceeding in the nuclear matter problem is not very good. The undamped
tensor force will contribute an additional ∼ −15MeV. To compensate this
the effective σ nucleon coupling in the quasipotential must decrease. It is dif-
ficult to see how such a reduction can come about. Still, the only recourse is
to actually carry out the program of study with a pseudoscalar Lagrangian
before we come to a definitive conclusion about the future nonrelativistic
treatment of nuclear matter.

This research is supported by the U.S. Dept. of Energy under grant
No. DE-FG02-93ER-40762.
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