
Vol. 29 (1998) ACTA PHYSICA POLONICA B No 9

DEEP INELASTIC SCATTERING AND THE

PION LIGHT-CONE WAVE FUNCTION ∗

Mikkel B. Johnson

Los Alamos National Laboratory, Los Alamos, NM, USA

V.M. Belyaev

Institute of Theoretical and Experimental Physics

Moscow, 117259, Russia

(Received June 13, 1998)

Light-cone QCD sum rules are used to calculate the quark distribution
function for the pion and place a new constraint on the pion twist-2 wave
function. When combined with information available from analysis of other
experimental data, we conclude that the wave function nearly achieves its
asymptotic form.
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1. Introduction

This talk reports on an investigation of the pion wave function within
the framework of light-cone QCD sum rules, with special emphasis on the
twist-2 component of this wave function and its relationship to the quark
distribution function of the pion [1].

In the light-cone QCD sum rule approach, the pion is characterized in
terms of transition matrix elements of nonlocal quark and gluon field oper-
ators sandwiched between the vacuum and the state |π(k)〉 in which a pion
has momentum k near the light cone k2 = 0. The twist-2 pion wave function
ϕπ(v) appears in the twist expansion of the matrix element

∗ Presented at the NATO Advanced Research Workshop, Cracow, Poland, May 26–30,
1998.

(2527)



2528 M.B. Johnson, V.M. Belyaev

〈0|ū(x)γµγ5d(0)|π(k)〉 = ikµfπ

1
∫

0

dve−i(kx)v
(

ϕπ(v) + x2g1(v) + O(x4)
)

+fπ

(

xµ −
x2

kx
kµ

)

1
∫

0

due−i(kx)v(g2(v) + O(x2)) ,

(1)

where the quantities g1(v) and g2(v) are twist-4 pion wave functions. The
three two-particle wave functions appearing in Eq. (1) are only a few of those
needed to completely specify the pion, with the remainder characterizing
other quark and gluon field configurations. The twist-2 wave function makes
the leading contribution to the left-hand side of the QCD sum rule in many
applications and has therefore been the object of much theoretical interest.

The first few moments of the function ϕπ(v) have been calculated by
Chernyak and Zhitnitsky [2] using the conventional QCD sum rule expan-
sion of Shifman, Vainshtein, and Zakharov [3], and from these it was sug-
gested that ϕπ(v) have a quadratic “double hump” dependence on the vari-
able u. Subsequent work [4] based on nonlocal condensates challenged this
conclusion, suggesting rather that the shape of ϕπ(v) is closer to asymp-
totic, i.e., 6u(1 − u). In the meantime, there have been several attempts
to determine ϕπ(u) from experiment using light-cone QCD sum rules: the
calculation of the pion-nucleon coupling constant [5] and the analysis of
γγ∗ → π [6]. We will use these empirical constraints, along with our new
constraint ϕπ(0.3) = 1.0 ± 0.2 [1] as discussed in Sect. 2, to determine an
empirical picture of ϕπ(v). The result of our constrained analysis, described
in Sect. 3, is that ϕπ(v) is asymptotic to within experimental errors.

2. Light-cone sum rule for the quark distribution

function of the pion

As in [1], we consider the correlator

Tµρλ(p, q, k) = −i

∫

d4xd4zeipx+iqz〈0|T{j5
µ(x), jd

ρ (z), jd
λ(0)}|π−(k)〉 (2)

for our calculation of the pion structure function. Here k is the pion mo-
mentum,

j5
µ = ūγµγ5d, jd

ρ,λ = d̄γρ,λd, (3)
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and the following kinematics is used:

k2 = 0; q2 = (p + q − k)2; t = (p − k)2 = 0; s = (p + q)2 ;

Q2 = −q2; (2k, p + q) = s + Q2; (2pk) = p2 . (4)

The discontinuity in s at fixed p2 and Q2 of the correlator of Eq. (2) is
calculated from

ImTµρλ =
1

2i

[

Tµρλ(p2, q2, s + iε) − Tµρλ(p2, q2, s − iε)
]

, (5)

where p2 and q2 are space-like vectors, p2 < 0, q2 < 0, such that
|p2|, |q2| ≫ Λ2

QCD. In the scaling limit, we assume that |p2| ≪ |q2| and

keep only the first nonvanishing terms in an expansion in powers of p2/q2.
The connection to the deep inelastic structure function is possible be-

cause the optical theorem relates the hadronic tensor Wµν to the virtual
Compton amplitude that appears when the pion contribution to ImTµρλ is
calculated in the physical region of the s-channel,

ImTµρλ = pµ
fπ

p2
Im

{

i

∫

d4zeiqz〈π(p)|T{jd
ρ (z), jd

λ(0)}|π(k)〉

}

. (6)

In this fashion we find

lim
t→0

ImTµρλ = −4π
x2

B

Q2

(

p −
pq

q2
q

)

ρ

(

p −
pq

q2
q

)

λ

t(p2, xB) + . . . , (7)

where

t(p2, xB) =

(

qd(xB)

p2
+

∫

ρ(s, xB)

s − p2
ds

)

. (8)

Here qd(xB) is d-quark distribution function of a pion. This constitutes the
right-hand side of the QCD sum rule. We will compare terms on the right-
and left-hand sides having the tensor structure pµpρpλ.

For the calculation of the left-hand side of the QCD sum rule, it is
important to avoid the boundaries at xB = 0 and xB = 1 [7] in order that
the amplitude is determined by small distances in the t channel. It is also
important to avoid expansion in p/k, which is naturally accomplished by
making use of the light-cone QCD sum rule.

Making the operator-product expansion of the correlator in Eq. (2), the
result of a very simple calculation with free d-quark propagators in Eq. (1)
gives

Tµρλ(p, q, k) = i

∫

d4xd4zeipx+iqz (x − z)αzβ

4π4(x − z)4z4

×〈0|ū(x)γµγ5γαγργβγλd(0)|π(k)〉 . (9)
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From this, we find the relevant tensor for the twist-2 contribution (p2 → ∞)
to be

Tµρλ = −4fπpµpρpλ

1
∫

0

(1 − v)ϕπ(v)

p2(s − (s + Q2)v)
dv, (10)

which gives the twist-2 contributions to the left-hand side of t2(p
2, xB) =

ϕπ(v)/p2.
The twist-4 contributions from the two-particle sector (see Eq. (1)) arise

in a similar fashion and give the twist-4 quark contribution to the left-hand
side to be

tq4(p
2, xB) =

4

p4

(

g1(xB) + G2(xB)

xB
+

1

2
g2(xB) −

dg1(xB)

dxB

)

=
1

p4
f4(xB) . (11)

There is one other twist-4 contribution, and it comes from a three-particle
operator involving a gluon and two quarks, namely from the matrix element
〈0|ū(x)gsGαβγγγ5(z)d(0)|π(k)〉. The calculation of the gluon contribution
is a lengthy calculation, which is explained in Ref. [1]. We distinguish two
contributions of the gluons, giving tg4(p

2, xB) = (fg(xB) + fg1(xB))/p4.
The light-cone QCD sum rule is now obtained by taking the Borel trans-

form of t(p2, xB) on the right-hand and left-hand sides to find

qd(xB) = ϕπ(xB) − (f4(xB) + fg(xB) + fg1(xB))

(

1

M2
−

e
−m2

A1
/M2

m2
A1

)

.(12)

where we have approximated the continuum as a pole at the mass of the A1

meson to stabilize the sum rule for large values of the Borel mass M.

3. Numerical results for the quark distribution function

We have carried out numerical calculations using the results of Ref. [8],
in which a series expansion of light-cone wave functions was suggested to
separate the longitudinal and transverse degrees of freedom, with the higher-
order terms corresponding to operators with increasing conformal spin. In
the case of the twist-2 pion wave function, this expansion is

ϕπ(u) = 6u(1 − u)
{

1 + a2C
3/2
2 (2u − 1) + a4C

3/2
4 (2u − 1)

+a6C
3/2
6 (2u − 1) + . . .

}

. (13)
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Here C
3/2
n are the Gegenbauer polynomials;

C
3/2
2 (x) =

3

2
(5x2 − 1) , C

3/2
4 (x) =

15

8
(21x4 − 14x2 + 1) .

We made numerical calculations using the asymptotic parameterization
of the quark and gluon wave functions. The asymptotic parameterization
for ϕπ(v) corresponds to the expression in Eq. (13) when a2 = a4 = a6 =
. . . = 0. This is suggested as a reasonable starting point by the results of
Ref. [9], in which an evaluation of the twist-2 and twist-4 wave functions
of the matrix element 〈0|ū(x)γµγ5d(0)|π(k)〉 in Eq. (1) is made using the
light-front quark model.

0 1
xB

0

1

2

q(
x B

)

q(xB)=6xB(1-xB)
QCD sum rule prediction with f4 contribution only
quark distribution from the Drell-Yan process
QCD sum rule predictions

Fig. 1. Theoretical results for the d-quark distribution function of the pion com-

pared to experimental results. The solid curve is the complete result appearing in

Eq. (13), evaluated with the asymptotic twist-4 and twist-4 wave functions.

Using the asymptotic parameterization of the pion wave function, we
show In Fig. 1 a comparison of our QCD sum rule in Eq. (12) to the Drell–
Yan measurements evolved to µ2 = 1 GeV2 [10]. Note that the calculation
has the same trend as the data, although it does not agree perfectly. The
level of agreement could be improved by adjusting the parameters of the pion
wave function. It is difficult to justify a detailed fit to the experiment, since
there the QCD sum rule approach has errors that are not completely under
control, particularly at the end points. An alternative idea suggests itself
from the fact that in the vicinity of xB = 0.3 the two-particle and three-
particle twist-4 contributions are small and of opposite sign. Thus, in the
region of 0.25 < xB < 0.4 the quark distribution function is given essentially
by ϕπ(v), which makes it possible to deduce the empirical constraint

ϕπ(u) = 1 ± 0.2 (u = 0.3) . (14)



2532 M.B. Johnson, V.M. Belyaev

4. Constrained analysis of the twist-2 pion wave function

If we assume that the pion wave function is not very different from its
asymptotic form, then we can expect that the higher terms in Eq. (13) are
small. This assumption means that there should be the following relations:

1 ≫ a2 ≫ a4 ≫ a6 ≫ . . . . (15)

In the present analysis, which is based on Ref. [11], we take into consideration
only the three leading terms in the expansion Eq. (13): 1, a2, a4. At the end
of our analysis, we find the relations in Eq. (15) to be approximately satisfied.

First, consider the constraint on the second moment based on the cal-
culation of Chernyak and Zhitnitsky [2], where we have adjusted the value
and added an error to take account of the considerations of [12]. In the
parameterization (13), this takes the following form,

m2 =

1
∫

0

u2ϕπ(u)du =
3

70
(7 + 2a2) = 0.35 ± 0.05 . (16)

Note that the higher terms of expansion (13) do not contribute to the relation
(16). The constraint of Braun and Filyanov [5], ϕπ(0.5) = 1.25± 0.25, leads
to the following result,

ϕπ(0.5) =
3

2

(

1 −
3

2
a2 +

15

8
a4

)

= 1.25 ± 0.25 . (17)

The constraint of Radyushkin and Ruskov [6] is an integral constraint, and
in the parameterization (13) it gives

I =

1
∫

0

ϕπ(u)

u
du = 3(1 + a2 + a4) = 2.4 . (18)

And, finally, the constraint of Eq. (14) gives us the following formula:

ϕπ(0.3) = 1.26(1 − 0.3a2 − 1.317a4) = 1 ± 0.2 . (19)

It is convenient to present all existing constraints on a plot with axis
a2, a4 (see Fig. 2). Note that due to the relatively small coefficient of a2 in
Eq. (16), a small uncertainty in the value of m2 leads to a big uncertainty
for a2. Assuming that m2 = 0.35 ± 0.05 we obtain

0 < a2 < 1.2 . (20)
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ϕπ(0.5) = 1.25 ± 0.25

ϕπ(0.3) = 1.0 ± 0.2
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Fig. 2. Constraints on the first two coefficients of the twist-2 pion wave func-

tion of Eq. (15). The circle corresponds to the values of the coefficients in the

Braun–Filyanov wave function, and the triangle to the coefficients in the Chernyak–

Zhitnitsky wave function; the asymptotic wave function sits at the origin. The

dotted line is the result with Eq. (18).

The relation (20) does not determine the value of a2 very accurately, but it
is useful, showing that a2 > 0.

The constraints for ϕπ(0.5) and ϕπ(0.3) are more sensitive to the param-
eters a2 and a4. From the relations of Eqs (17), (19) it follows that

a2 = 0.25 ± 0.25 ; a4 = 0.1 ± 0.12 , (21)

and we can not exclude the possibility that the pion wave function attains
its asymptotic form. From relation (21) we obtain the following prediction:

I = 4 ± 1 . (22)

5. Summary and conclusions

Using the light-cone QCD sum rule method, a new constraint on the
twist-2 pion wave function has been shown to arise using phenomenological
Drell–Yan results. The result of applying the sum rule leads to the result
that ϕπ(0.3) = 1 ± 0.2. A combined analysis of all light-cone QCD sum
rule constraints is indicating a twist-2 amplitude ϕπ(v) nearly asymptotic
in form for µ2 =1 GeV2 in which the coefficients a2 and a4 in the expansion
of Eq. (13) have the values given in Eq. (21).
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We furthermore quoted results that indicate that the light-front quark
model and the light-cone QCD sum rule method are complementary sources
of information about the pion at scales µ2 =1 GeV2, and that the two
approaches are consistent with the asymptotic characterization of the twist-
2 wave function.
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