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ELECTRON EXCITATION OF NUCLEON RESONANCES*
By J. D. WALECKA
Institute of Theoretical Physics, Stanford University**
(Presented at the XI'® Cracow School of Theoretical Physics, Zakopane, June 8-22, 1971)

The general analysis of electron excitation of nucleon resonances is presented,
and the consequences of two very simple models of the nucleon are discussed. The results
are compared with SLAC data on this process.

1. General analysis

A. Introduction
B. Response surfaces with single-photon exchange
i) Electron scattering
if) Photoabsorption
C. Some SLAC results in the resonance region
i) Response surfaces
ii) Inelastic form factors
D. Analysis of excitation of diserete states
i) Helicity analysis and inelastic form factors
ii) Cross section
iii) Threshold behavior
E. Pion electroproduction
i) Expansion in kinematic invariants
ii) Helicity analysis
iii) Identification of inelastic form factors

There are two reasons why electron scattering is a powerful tool for studying nuclear
structure. First, the interaction is known. The electron interacts with the local electro-
magnetic current density in the target. Since this interaction is relatively weak, of order
o, one can make measurements without greatly disturbing the structure of the target,
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in contrast to the situation in the scattering of hadrons. Second, for a fixed energy
transfer, the three-momentum can be varied and the Fourier transforms of the transition
charge and current densities mapped out.

The present discussion will be limited almost entirely to the situation where only the
electron is detected. In this case there are three free variables, k, and k,, the initial and
final electron wave numbers, and 8 the scattering angle, or equivalently x? = (k, —k;)?,

W2 = —(P—k)? the masses of the virtual photon and final state of the target, and 6.
If the target

x-kz "k1
=p-p

is unobserved, then in the one-photon-exchange approximation the cross-section can be
calculated in the standard fashion and takes the form?! [1]

d’e o 1 LW w1
dQ,de, o m e :
2082 42 sin* - "
2
where
an = _% Z u(kZ)yltu(kl)u(kl)Yvu(kZ)=
spins

1

= e (ki koy+kiko,—8,,(ks + k)] (1.2)
€183

and the target response is characterized by the tensor

W,, = 2n)’Q Y Y 6P — P ~k) (P|JO)|P"> (P'|J(0)|P) (E)= (1.3)
i f '

KK, 1 Pk P-x
= W,(k*, x - P) (5,”— ;2 ) + Wy(x?, k- P) 3 (Pu— 2 xu) (Pv— 2 xv> 1.4)

where € is the normalization volume, E is the initial energy of the target, m is the target
mass, 2 indicates an average over initial target, states, |P > and |P’> are Heisenberg
state vectors of the initial and final target states and j,‘(O) is the electromagnetic current
operator for the target evaluated at x, = 0. The form (1.4) follows from Lorentz covar-
iance and current conservation [2], and the electromagnetic response of any target is
evidently characterized by two response surfaces W ,(x? x - P). The electron scaitering

1 We use a metric such that a,, = (@, ia,). The gamma matrices are hermitian and satisfy p,.y, +7v, =
= 24,,. The Dirac equation is (iy - prm,)u(p) = 0. We also take # = ¢ = 1 and a = e¥/dm > 1/137.
We use a carat to denote operators in the Hilbert space of the target.
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cross-section is thus

2 .2

o” cos
d’c

dQ,de,

. 2 2 .. 2 9
Wy(k™, k- P)4+2W,(x°, k * P) tan 51 (1.5)

3=

4¢3 sin*

NI N

The contributions W, , can be separated by keeping the variables x? and x - P fixed and
]
making a straight-line plot against tan? 5 (a “Rosenbluth plot™) or by working at § = 180°

where only W, contributes.

The same response tensor W, describes the absorption of a real photon of four-
-momentum k = —x, and the photoabsorption cross-section again follows in a straight-
forward manner

@Qn)’« 1 a
) (2)
o(w) = .= e'W,e” =
A®) mew 2 By
pol
2m)%a
= 2n) - W0, —k- P) (1.6)
mo
where mw = —k - P. Thus photoabsorption measures one slice at k2 = 0 on the two-
-dimensional surfaces W, ,(x? « - P).
10
9
— RESONANCE FiT
>
s 8 l Eg® 7.0 GeV
5 7 8 = 6.0 DEGREE-
~
~
E 6 i |
o \
8 5 m
e ’ Py |
= 4 ’q‘n |
\|y “M ]
.-:Dg i i I it l A I
o 2 [\ ki (LY |
o | ‘“.."”'"‘-'-"w e
' ! “ .
o A

1.0 1.2 14 16 1.8 20 2.2 24
MISSING MASS IN Gev

Fig. 1. The SLAC experimental inelastic spectrum at ¢; = 7 GeV, 6 = 6°, resolved into Breit-Wigner
resonances by the fitting procedure discussed in the text [3]

Figures 1 and 2 show measurements of the SLAC group of the (radiatively corrected)
cross-section for inelastic electron scattering from the proton at 6 = 6° and incident
energies ¢; = 7 and 10 GeV [3, 4]. The elastic peak is not shown on these figures. There
are three distinct, and a fourth discernable, peaks seen in these experiments corresponding
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Fig. 2. Same as Fig. 1 at ¢, = 10 GeV [4]
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Fig. 3. dojy/do,; (see text) at 6° for the 3/2%, 3/2 (1236) resonance. Experimental points are from SLAC
Group A% and the resonance analysis of Breindenbach {4]. The predictions of models I and II (defined in
the text) are indicated [10, 11, 13, 14]

to the excitation of resonant states of the target. The SLAC group has fit their data in
this region with a smooth polynomial background term and a series of Breit-Wigner
resonance terms whcse positions, widths, and strengths were treated as variables. The
best resonance fits are also shown in Figures 1 and 2 [3, 4]. The area under the resonance

peaks yields the inelastic resonance cross-section

do,, i d*c
= de, . (1.7)
dQ, dQ,de, |, 9

over resonance
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Fig. 4. Same as Fig. 3 for the 1520 MeV resonance region. Also shown is the pure threshold behaviour
(Eq. (1.27))
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Fig. 5. Same as Fig. 4 for the 1688 MeV resonance region

Figures 3-6 present the ratio (dg,,/dc,),_¢- for the four observed resonances2. The experi-
mental points are taken from the analysis of the SLAC data by Breidenbach [4]. The
SLAC group has not yet separated the two contributions in Eq. (1.5). On each plot we have

? Note
a? cos? 6 Gt + K Gy
dog 2 1 P 4m? P K2 ¢
= + Gir, tan? —
dQ, 0 2, l o 2mr Me 2
4e2sint — 1| + —sin®? —
R am?

In Figs 3-6 do. is evaluated at the same &, and 8; however, all the momentum transfer inside the brackets
are evaluated at a x2 corresponding to the resonance rather than the elastic peak. The resulting ratios
(see Eq. (1.18)) are essentially independent of 6 for small § and all the x® 3 0 points in Figs 3-6.
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one point at k2 = 0 coming from the photoabsorption cross-section integrated over the
resonance (see Egs (1.18) and (1.19)). The qualitative behavior of this ratio for the four
peaks is remarkably similar. There is a threshold region where the ratio (da;,/do,,) in-
creases rapidly. It then levels off and remains remarkably flat. In addition, the levelling-off
value is rather surprisingly close to one in all four cases. The purpose of the present set
of lectures is to seek a theoretical understanding of the electroproduction of nucleon res-
onances.
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Fig. 6. Same as Fig. 3 for the 1950 MeV resonance region

We start our discussion with a general analysis of the process of excitation of a discrete
state (or isobar) of mass M and spin-parity J"z[5, 6]. We know from

™R

) j:
m %'

electron excitation of nuclei that a 1/2*— J”"rtransition can take place through one cou-
lomb, one transverse electric, and one transverse magnetic multipole (except for a 1/2%—
— 1/2%* transition where only one of the transverse terms contributes) and therefore we
expect the relativistic vertex to be characterized by three (two for 1/2* — 1/2¥)independent
amplitudes or inelastic form factors.

If the final state of the target has a definite mass, we can write for this state

dP’
W,, = = S(P—P —Kx)m*T,, (1.8)

where the covariant tensor T, has the same form as in Eq. (1.4) and may be evaluated
in the isobar rest frame as

r2
T, = % Z Z <K*A T ONI™ Mty TR M| T (O)|e*2) (EE f) ) 1.9
Fi H

m
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In this expression x = (k*, ix,), 4 is the initial proton helicity, and J"2.# are the angular
momentum, parity, and z-component of the angular momentum of the isobar. Using
the results of Jacob and Wick [7], the proton helicity states can be superposed to give
eigenstates of angular momentum according to

. 2 +1\"
|K.Im’{> = (“4'_7{_) Jdgxgil(ﬁwx’ _gm Wh)*lk’1> (110)

where @7, are the familiar rotation matrices [8]. Inverting this relation through the
completeness of the 2’s we have

2j+1\" .
2 = Z (‘JZ“) Diol— 9 =0 |IME). (L1
T

Jjm
The problem is therefore reduced to examining matrix elements of the form
5 2j+1\"* . e 1
T RM|TOx*2) = ) Dni= P =0 IR |7 0)|xjm2y. (1.12)
Jjm

For J(0), the Wigner-Eckart theorem implies j = J, J+1, while for J,(0) it states J = j.
There is, however, one relation between these four reduced matrix elements coming from
current conservation

K, TR M|T(0)|K*A) = O (1.13)

and the problem is thus reduced to three independent amplitudes, or inelastic form factors,
in accordance with our above discussion.

In defining the inelastic form factors it is first convenient to introduce linear combina-
tions of helicity states corresponding to parity eigenstates [6, 7]

1 L,
|k, m = £1,jm) = 7 [eimd> +(— 1/~ "jm - 1] (1.14)

and linear combinations of reduced matrix elements [6]

= ST (Y Gatgljias 0y I @t ’5’519?)1/2 (1159)
Jo= 2i1) e+ IOk M2, o

J

with ¢ = 0, &1 (denoted 0, +) and?

, EE'Q™\"
fo = =<I™||To(0)||*nJ > (W) . (1.15b)

3 For convenience, a minus sign has been included here in the definition of f_.
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The continuity equation then simplifies to

—Je- (1.16)

The components of T,, in the isobar rest frame yield, after a little algebra, two relations

;w

EE'Q*\ M?
2 ZI(J"R||J(O)“K*7IJ>| <_M) - z e

(Equation (1.17) continued)
. EE'Q? M?
oo = =Ko henidP (Gorr ) = = o |1
which can be used to determine T; , (x?) and the electron scattering cross-section in the lab

becomes [6]

0
a* cos? - 2
dQ i . . 40 2e, Aze xxé e 22
4eysin® - 14 —sin
2 m 2
M? 6
+— tan? i)(]fﬁL12+1f_|2)]. (1.18)

The photoabsorption cross-section for excitation of the isobar can also be immediately
obtained as [6]

4n’e  M? 5 )
o(w)dw = 3 ”,;;“(If*l a0 (1.19)

M*—m

Jab; over resonance

Equations (1.18) and (1.19) are the main results of this section. The problem is now
reduced to a set of inelastic form factors. A few properties of these form factors follow
from general principles. For example, the entire x* dependence of the reduced matrix
elements is contained in the nuclear state vectors [x*zl} An exphcnt construction of this
state can be given by noting that there is a unitary operator e@R: which boosts a particle
from rest to a momentum x* in the z direction

|Kk*A> = e9R:|0A)

—y K* K*
Q=tanh™ —s s — —. (1.20)
(K*“4+m") "2 ei0 M
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The operator K, which generates the Lorentz transformation in the z direction is a polar-
vector operator under spatial rotations and reflections. It follows from Eq. (1.10) that

2j+ 1\ ; . 2
!K*jlﬂ;.} = <J47) J‘dgx@!ml(—(pm _Bm (px)*R--(p,‘-G,‘(p.ceQKz’Ol) (121)

w here

A

R, = 7P (1.22)

is the finite rotation operator. If we now let x* - 0, we observe that K, must act often
enough in the expansion of the exponential to obtain a basis for the j representation
of the rotation group. Otherwise, the integrations over @7, give zero. Furthermore, since
K, is a polar vector, it must act often enough 1o yield a state of the correct parity, which
is what we eventually want. Since each time a K. acts, it carries with it a power of (x*/m),
the xk* dependence can be read off in the various cases [S, 6]

i) Normal-parity transitions: 1/2*— 3/2-, 5127, 7/2-, etc.

for ¥y ™0
fa ~ ¥y 7 (1.23)
i) Abnormal-parity transitions: 1/2+ — 1/2-, 3/2~, 5/2~, etc.

Jo~ (k)
fo ~ (¥ 712, (1.24)

In the case 1/2- — 1/2%, Eq. (1.15a) implies that f. = 0 and there are only two form factors.
Furthermore, in the case of 1/2* — 1/2* transitions, the k* — 0 limit of the electric monopole
operator is just [, the total charge, and cannot cause transitions. Therefore, the threshold
behavior in this case is £, ~ (k*)%, f_ ~ k*.

One might be tempted to conclude from these arguments that the expansion para-
meter for threshold behavior is k*/m. However, this argument is invalid since, at least
in nuclear physics. it is known that the relevant quantity is the size of the target and not
the reciprocal of its mass.

Since the four-momentum transfer must be space-like, k2 > 0, there is a minimum
three-momentum transfer

m+M
2M

for electroproduction of an isobar of mass M. Thus it is not clear a priori whether the
above threshold relations have any applicability in the experimentally accessible region.

In the case of normal-parity transitions, the threshold conditions (1.23) can be comb-
ined with the continuity equation (1.16) and the definitions (1.15) to yield the relation {6]

~ |2 2 . \2 1
L&!ﬁif—i ?0<;t_:> jii J>2 (1.26)

K* =

(M—m) (1.25)
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This relation is familiar in nuclear physics and is just that used to relate the lifetime for
photon processes to coulomb excitation. Thus we can combine Eqgs (1.23) and (1.26) to
write a “threshold cross-section”, which follows from very general grounds, for 1/2+ — 3/2-
5/2+, 7[2-, etc. normal-parity transitions [6]

a® cos® - .

<do') _ 2 1 {K 4
A2 Juwesn 2 . 40 . 26 . ,0 k"

hreh 452 gin® 14 —Lsin? o

2 m 2

2 2 2

Ko\ (TN M2 O\ s ey
+ (52) (F5) (e + a0 3 s .27

where a is a constant. The results obtained using this threshold cross-section normalized
to photoproduction are shown in Figs 4 and 5. While it does provide a good description
of (do;,/do) for very small x2, the experimental data soon fall away from the threshold
curve, indicating that the internal structure of the target is then playing an important role.
_ The analytic properties of the inelastic form factors are discussed in Ref. [6]. They are
more complicated than in the elastic case, with complex anomolous thresholds being
present. So far the analytic properties of these objects have not proven very useful.
In the next lecture we shall discuss the nucleon isobars as resonances in pion electro-
production

2 2
W= '(P1 +k)
k= —x=ky~k,

1
=5 (k-q)

The invariant amplitude for this process can be expanded in terms of six independent

4
kinematic invariants M/, i =1, ..., 6[for example, Mie" = ; - y5(¢1¢—1¢¢)] [9]

2w,E.E,Q%\'/? s
(- N I

= i(p,) [i e MEAW, 4%, kK*Y]u(p)) = &,J, (1.28)

which explicitly satisfy current conservation.
kME=0 i=1,..,6. (1.29)

In this expression ¢, is the Moller potential coming from the electron part of the diagram.

1
g, = = u(ky)yy uk,). (1.30)

¢ Here and henceforth we take the Dirac wavefunctions to be normalized to uuw = 1.
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The expression (1.28) can be decomposed into helicity amplitudes in the CM system

where p, = —k* defines the z direction according to [10]
m
—J ey, =
4w~ R

(4k* “2 Z (2']"‘1)9;, 02— Pps *9,;, Pp) <’12!TJ(W, kz)l)m A (1.31)

where the angles refer to p, and

1
e = F ;2 (ex,1 e 2) (1.32)

Cro = k/|k|

are the familiar helicity unit vectors. (This helicity analysis can be immediately generalized
to any two-particle final state of the target.) The matrix elements J, can be obtained from
current conservation. The above analysis, including the relations between the invariant
amplitudes 4; and the helicity amplitudes, is carried out in detail in Ref, {10-12] and will
not be reproduced here. The main point for us here is that the inelastic form factors can
be simply expressed in terms of the helicity amplitudes in Eq. (1.31) [10-13]

17" = ” /2 jk;iiT’(W K)|3*, 02w

INSUA SR

f[[(;*lT’(W KH3*, D+
+|GHT W, )L, D law (1.33)

where we have introduced the appropriate linear combinations of helicity states to give
parity eigenstates and the states are now characterized by n = (—1)’*'2, 1 = 20— 2],
and |4/.

At this point we have essentially exhausted the general properties of the process.
To proceed further we must introduce some further information about the target, and
in the next two lectures we will discuss the consequences of two very simple models of
the nucleon.

2. A relativistic model

A. Elastic resonances in pion electroproduction
i) Model and justification
ii) As approximate solution to Omnés equation

B. Extension to inelastic resonances
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C. A coupled-channel calculation
i) One resonant eigenphase shift
jii) The subtraction point
iiif)Recovery of previous results
D. The excitation mechanism
i) |mN > channel
ii) |tN* (1236) > channel
E. Comparison with experiment
i) Resonance spectrum
ii) Inelastic form factors

F. Coincidence experiments

In this lecture isobar formation is viewed as a resonance in pion electroproduction
and we start with the case where the resonance can only decay elastically back into the
lnN > channel. The three independent helicity amplitudes in Eq. (1.33) shall be denoted
generically by a(W, k%). The model then consists of writing [10, 11]

a(W, k?) = d"™(W, k?)|D(W) 2.1)

where a™(W, k?) is the multipole projection of a gauge-invariant set of exchange graphs
thought to play an important role in the excitation, and D(W) is a final-state enhancement
factor. For example, there is an expression due to Watson [15]

o9}

D(W) = exp[—— 1 de'
n v

Wo

2.2
W —W—ig 2.2

(W) ]
where W, = m+yu is the |nN) threshold and 8(W) is the |nN) scattering phase shift
in the appropriate channel. The process

Py I.?E

can thus be considered as proceeding in two steps. First, there is an excitation amplitude
to produce the |7tN > system in the appropriate J” state, and then, once the system is
produced, there is a resonance mechanism, which need not be specified at this point,
that builds up the resonance. The model may be justified on the following grounds:

i) The calculation is completely gauge invariant and covariant.

if) The amplitude has the correct threshold behaviors in k* and g since the multipole
projection of any Feynman amplitude has these properties.

iii) The amplitude has the correct analytic properties since a™(W, k%) has left-

-hand-singularities (lhs) located at the correct places while D(W) has the right-hand unitarity
cut (rhe) in W. Note that we will only have a model of the lhs region, however.
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iv) The amplitude (2.1)-satisfies the final-state theorem coming from unitarity and
time reversal since on the rhe, a™(W, k?) is real and

D(W) = |D(W)| e MW > W, 2.3)

v) The model represents an approximate solution to the Omnés equation in the
vicinity of a resonance provided that @™ (W, k2?) is a slowly varying function of W in the
region where sin 6(W) s 0 on the rhc.

vi) The electroproduction amplitude now resonates at the same place as does elastic
scattering. To see this, we define a resonance by (compare Eq. (2.3))

Re D(Wg) =0 2.9

D(W) can then be expanded in the vicinity of the resonance as

d
D(W) = (W~—-Wpg) [— Re D(W)] +ilm D(Wg) =

= Re' D(Wy) [W— Wg+il[2] (2.5)
where it is assumed that Im D(W) is slowly varying. This leads to the familiar Breit-
-Wigner form for a(W, k%), and the inelastic form factors (see Eq. (1.33)) are given by
27: a"’s(WR, k2)
Re' D D(Wg)

j la(W, K)[?dw (2.6)

fesofiance

Before continuing the discussion of the model, we present a demonstration of point v)
above [10, 11]. Since the phase of a(W, k?) on the rhs is assumed known from the final-
state theorem, a(W, k?) satisfies an Omnés equation [16]

3 —i6(W") o ’ r 12 w’
a(W, k%) = a"™(W, k*)+ : J : = (S,(W )a(V.V K
n W' —W—ie

Wo

Q2.7)

Wo W<w

where it has been assumed that "™ (W, k?) is given in the region W, < W < . A solution.
to this singular integral equation was obtained by Omnés [16]

a(W, k*) = %™ [a“"(W, k%) cos (W) +

(2.8)

+ &2 Z [ ath(é’ k2) sin 6(6)6”9(5)‘15
E-w

T
Wo

where

5(5)

— (2.9)

?
oWy =" |
Wo
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(All integrals will be assumed to converge as written for the purposes of the present
simplified discussion.) Now if a™*(W, k?) is slowly varying where sin (W) # 0, then in the
vicinity of the resonance

a(W, k?) = d"™(W, k)W) (2.10)
where
1 [ s(W)HAW’
(W) = eXP[ J P }p(W) (2.1
Wo
and
W) = L[ s(W)haw'
¥ eXp[ W W—is]
Wo
1 3 sin 8(¢) P m&(c)dc
+7§J dfé_W_—isexp[—; j C—c:]' (2.12)
Wo Wo

We have factored out @™ (W, k?) and then subtracted and added i sin (W) in the bracketed
expression in Eq. (2.8). Now, by inspection, w(W) has the following properties:

i) w(W) is analytic in the W plane with only a rhec for W, < W < 0.

i) y(W)—>1 as |WI—» 0.
An unsubtracted dispersion relation can therefore be written for y(W)—1

1 isc y(WHdw’

pW)—1= 2l Twow—e (2.13)
Wo
but on the cut
disc p(W) = exp[ (Z(E)dc] [~ sin 8(W)+ sin 6(W)] = O. (2.149)
Hence "
p(W) =1 (2.15)

and Egs (2.10), (2.11) reduce to Eqs (2.1), (2.2) which is the desired result.
If it is assumed that at some point W = my, a(m,, k?) = a™(m,, k?), then D(W)
may be subtracted at this point

o0

aw’

W) ] (2.16a)

D(W) = exp [" W —my W —W—ig) |’

Wo
D(m,) = 1. (2.16b)

The above discussion makes rather strong assumptions about the behavior of sin 6 (W)
and convergence of the integrals involved. In any event, the model given by Egs (2.1),
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(2.2) or (2.1), (2.16) will be assumed to have a more general validity than this demonstra-
tion might imply.

This discussion can be considered as a simplified synthesis and summary of some
very detailed work on the first nucleon resonance, 3/2t, 3/2(1236) by Fubini, Nambu,
and Wataghin [9], Dennery [17], Zagury [18], Gutbrod and Simon [19], Vik [20] and
Adler [21]. Our aim is to extend these ideas to the higher nucleon resonances.

Unfortunately, unlike the N*(1236) which decays elastically, the higher resonances
can decay into other channels, and the previous analysis must be extended to inelastic
resonances. The simplest way to do this is to write [10]

e'sin &
Jw) = Y = N(W)[D(W) (2.17)

where f(W) is the partial-wave amplitude for [nN > scattering satisfying general inelastic
unitarity

Im—= —¢ = —q— (2.18)

with all quantities referring to the J™ channel. In Eq. (2.17), N(W) is assumed to have
only left-hand singularities and D(W') to have the right-hand unitarity cut. We may then
again make the model (2.1) for |nN > electroproduction, only now we use the D(W)
in Eq. (2.17). A resonance in [nN > electroproduction can still be defined by Eqs (2.4),
(2.5), and in this case f(W) assumes the familiar Breit-Wigner form

fwy = — —Fal?a (2.19)
W—Wr+il[2
where use has been made of the inelastic unitarity condition (2.18), and
21 |a™(Wy, k3)|?
W, k3| aw = = [0, 2.20
J‘ la( )7 +N->N+n I—v Re/ D(WR) ( )

resonance

This is now a model for the process y* + N — N+ r through the resonance. In the “comp-
ound-nucleon” picture, the decay of a sharp resonance is independent of the mode of
formation. Therefore, to get the probability for y*+ N— anything, we simply multiply
the above by I'/T’,

tr 2.21)
Fel‘ .

ath( WR’ k2)

- 27
Re’ D(Wy)

2 d =
*+ N ~anythin,
Y Y g r

la(w, k?)

resonance

We shall refer to this as model I. Note that the k% dependence in Eq. (2.21) is explicit
in the expression |a"™(Wg, k|2 While this result has the advantage of simplicity, it is
somewhat unsatisfactory since if a resonance can decay inelastically, it must also be
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possible to form the resonance inelastically. To improve this result, we therefore turn to
a coupled-channel calculation [11].
We assume that the resonance can be formed through

two channels |1> and l2>, which shall actually be taken as lnN) and lnN*(1236)>
(lowest / value) in the subsequent calculations. Now the strong-interaction two-channel
S-matrix for a given J7 is unitary and symmetric and can always be diagonalized with
a real rotation. Thus if we define

2
e = 'Zx Ryl (2.22)
i=
with
R=< C.OSS sine)
- —sing CoSé
then
- R
§e = 555 V= (0 e2i§2 (224)

where the eigenphase shifts £, , are real. As the simplest model of an inelastic resonance
[22] we assume that one eigenphase shift ¢ = & is resonant

—Ip2

eosin & = —— - 2.25
¢ W—We+ilj2 (2.25)
and for the other
sin &, = 0. (2.26)
The strong-interaction 7-matrix then takes the form
1 e cos® e cos gsin &
T=—-(S~1)=¢"siné . .2 2.27)
— 2 - < cos gsing sin“ e
The scattering amplitude in channel |1> can therefore be identified as
1 . .
— (*®1—1) = (cos® g)e” sin ¢ (2.28)

2i

which allows an evalvation of both ¢ and |e[ from the experimental (complex) values
of §,5. It also follows from Eq. (2.27) that at resonance, the branching ratios into channels
|1> and |2> are given by

)T = cos?e

I,/ = sin?e. (2.29)

5The choice of sign ¢ is discussed in Ref. [11].
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Since the resonant eigenchannel is now
|el) = COS & Il) +sin g |2> (2.30)
the previous model can be easily extended to give

A(W, k?) = [aP*(W, k?) cos e+ay>(W, k?) sin e}/ D(W) (2.3D

0

D(W) = exp[— }r JdW'

Wo

W —W—ic (2.32)

) h]

The eigenchannel |e;> is first produced with the amplitude @} cos +a5* sin ¢, and the

resonance mechanism then builds up the final-state enhancement factor D(W) which now

involves an integral over the real eigenphase shift. The simplifying assumptions

that we have made have reduced the two-channel problem back to a single resonant

channel. In electroproduction, the in¢lastic form factors are given by (compare Eq. (1.33))
i, iBPaw =

2
~ F” | (W, k?) cos e+ alf*(We, k2) sin sx]/Re’ D(W)|* =
= [ |a,(W, K)Paw + [ |ay(W, K*)|?aW . (2.33)

An analysis of the experimental |7ZZN> scattering data indicates that &— n/2 for
W 00
all the resonances we are interested in [11, 14). Thus we are forced to perform a subtrac-

tion in Eq. (2.32) and write

D(W) = exp [— Wom, j aw’ ) ]

T (W —m) (W' —~W —ie)

D(mg) = 1. (2.34)

This introduces an unknown parameter m, equivalent to the absolute strength of the
resonance at some point, into our analysis. We shall refer to the present calculation as
model I1. The results in model 1 can be recovered in several limiting cases of model IL.

For example, if @ = ay* and Iy =~ I, then

2

2n I
—— . (2.35)

rr,

allhs(WIb kz)

f |4, K*)2dw ~ A

resonance

The next problem is to discuss the excitation amplitudes a‘f:sz (W, k*). For the |7rN >
channel we have kept the graphs shown in Fig. 7. These graphs are treated as “generalized
Feynman amplitudes” which means they are computed as Feynman graphs using renor-
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malized, mass-shell couplings at the vertices. Such amplitudes will properly reproduce all
the pole terms in a dispersion theory. It is clear that graphs (b) and (c¢) involve the
elastic nucleon form factors. In order to make the sum of these graphs explicitly
gauge invariant, we make the simplifying assumption that F, (k%) = F{(k?). This is consist-
ent with existing experiments. In graph (d), only the coupling ig,nyy7,¥®, is retained
at the nucleon vertex. The coupling constant Zuny 18 known from the decay of the w. It
is the large value of this coupling which motivated us to retain graph (d). Unfortunately,

[C)] (c)
q P2
l [
{ A
"a i
1 i
{d) (e}
: |
- !
| w N*(1236)

Fig. 7. Generalized Feynman amplitudes used as the excitation mechanism for the 2N > channel {10, 11, 13]

the relative sign of these two couplings, which is essential since amplitudes must be added,
is unknown. We have therefore taken

ﬁ — \/m gamy . 8wNN (236)
|ga)n7| 8NN
as a parameter and chosen the value f = —6 to give the best overall fit. The resulting

value of |ngN/g,,NN| is consistent with other measurements of this quantity [10}. The form
factor entering in graph (d) is unknown. Based on rather flimsy arguments of vector-
meson dominance, it has been taken as

The last graph (e) (which was only included in model II) involves the inelastic form factor
for N*(1236) production. This was taken from experiment. The sign of the product of
coupling constants in (e) relative to that in (b) or (¢) can be determined by comparing this
isobar model with the CGLN calculation of photoproduction [11, 23].

In the |nN *(1236)> channel, channel |2>, the graphs shown in Fig. 8 have been

A

retained. The (ANN*) coupling is taken of the form y,yy« ('Y_",vp ;—(p> and the gauge term (c)
X

is included since this involves a derivative coupling. The relative signs of the couplings
in these graphs are all known from the above analysis. Only the convection current part
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of graph (e) has been retained for current conservation, and the form factors in graphs (c)
and (e) have been determined by demanding that this model sum of graphs be explicitly
gauge invariant. The details of these calculations are contained in Refs [10,11,13].
Because of the subtraction parameter m, in Eq. (2.34), we are unable to calculate the
absolute strength of the inelastic form factors for each resonance. Our approach has been
to first normalize the relative contributions of each known nucleon resonance to the
values measured in photoproduction. Thus the second nucleon resonance region includes

(a) (b) (c)

; \ \

r+ N* \\ \/
A + +

T A A

[ P, (GAUGE TERM)

j

(C 4% 2 oNLY) (CONVECT!ORN CURRENT
PART]

k+p 29 +p,

Fig. 8. Same as Fig. 7 for the [nN*(1236)) channel

the 3/2-, 1/2 (1525) and 1/2-, 1/2 (1550) while the third includes the 5/2+, 1/2 (1688); 5/2-,
1/2 (1680)—79%; 1/2-, 1/2(1710); and 1/2-, 3/2 (1640). The fourth resonance is assumed
to be the 7/2*, 3/2 (1950). In the present calculation, the contribution of the 1/2- states
remains small at all k2. Thus the second and third resonances are dominated by the 3/2-,
1/2 (1525) and 5/2*, 1/2 (1688). The theoretical calculations are then normalized to the
SLAC experiments. The values of m, determined from this normalization are shown
in the table. It is

my in GeV
State [ Model 12 | Model II®
l | -
3/2+, 3/2 (1236) g 0.89¢ | 0.86°
3/2-, 1/2 (1525) ‘ 0.91 ; 1.05
5/2-, 1/2 (1680) i physical region 1.1
5/2+, 1/2 (1688) w 0.35 1.13
7/2+, 3/2 (1950) | 0.72 ! 0.43

2 Computed using Eq. (2.35).
b Computed using Eq. (2.33).
¢ Computed using Re ¢ in Eq. (2.16).
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interesting to note that the prescription m, = m gives the absolute normalization for all
of the observed resonances to within a factor of 2.

The resonance spectrum calculated from Eqs (2.31), (2.34) at ¢; = 10 GeV, 0 = 6°
is shown in Fig. 9. The eigenphase shifts for the second and third resonances have been
determined from the Glasgow phase-shift analysis [14]. Since J"has not been experimentally
measured for the peaks observed in electron scattering, the similarity of the theoretical
and experimental resonance spectrum (Figs 2 and 9) at all k2 is the strongest evidence that
we have that we are talking about the correct resonance states.

0.0 b= i
t
[
- i
: THEORETICAL RESONANCE
P
8.0 = : SPECTRUM
i
2 b= I € > 10GeV
o ' .
! 8 » 6.0 DEGREES
@ 60 !
~ 1
_S !
A o '
z '
~
v a0l i
5% !
~ ¥
° % ' f
I 1 1 (i
! I /
20 i 1 I
[ ] /
i ’ ’
- ! / /
! l pid
/ - 4 DN
0o r3 . = = = L I
.o i.2 t.4 wi{gev) 1.6 1.8 20

Fig. 9. The resonance spectrum at & = 10 GeV, 6 = 6° computed from Eqs (2.31), (2.34). This is to be
compared with Fig. 2. The eigenphase shifts for the second and third resonances have been determined
from the Glasgow phase-shift analysis using Eq. (2.28), for the others the CERN analysis was used [14].
The dashed curves are obtained by multiplying the solid curves with the threshold factor (g/gg)2*** below
resonance. (This gives some indication of the true behavior near pion threshold) [14]

The theoretical values of (do;,/do)eo for the first four nucleon resonances are shown
in Figs 3-6 (the calculations based on model I were carried out before the SLAC experi-
ments [10}). The advantage of looking at this ratio is that Gﬁp(kz) drops out since the in-
elastic amplitudes in this model are also proportional to the elastic form factor®. The
model successfully explains the levelling off with k? and the region in k? where this levelling
off occurs. This implies that we have included particles of approximately the correct mass
in our exchange mechanism. It is rather surprising that this simple picture holds up to

such high k2

¢ Thus only a scaling law for the elastic form factors is needed in the present theoretical calculation.
We have assumed Gg, = Gum,ft, = Guafp, = — (@m*k*)(Gg,/n,). Other proposed scaling laws do
not significantly change the results in Figs 3-6 [11].
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Fig. 10. (|f,]*+|f-|3/GE, and |f.|?/GE,, for the 3/2*, 3/2 (1236) resonance [11]. The predictions of models I

and 1I (defined in the text) are indicated. The experimental points are from Ref. [24-26]. At the highest k2

point from both Cone et al. and Brasse et al., the cross-section has been assumed to be entirely transverse.
The point at k2 = 0 is determined from photoproduction data
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Fig. 11. Predictions of model Il for £, Gg,,, f-/Gg,, and f./GE, forexcitation of the 3/2-, 1/2 (1520) resonance
followed by decay into the |[#N > final state [12]. To get the f’s for decay into any final state, these amplitudes
must be divided by cos ¢g = 0.71. The points at k2 = 0 come from photoproduction of pions



The similarity of the results of models I and H lends support to the theoretical analysis,
but also indicates that the ratio (do;,/do,)¢o is not critically model dependent. This is
evident since it is the sums of the squares of three amplitudes which is being measured
(Eq. (1.18)). More model dependent are the individual coulomb and transverse contribu-
tions. A separation of these quantities for the N*(1236) has been carried out by Lynch at
lower k? ard the results are shown in Fig. 10 [11, 24-26]. Note the interesting predicted
diffraction structure in | ft|2. The individual contributions f., f;, and f_, which can only
be separated in a coincidence experiment, can be expected to show even more structure.
Figure 11 shows the model II predictions for these quantities for the 3/2-, 1/2 (1525)
[12]. Note the diffraction feature in f, at k= 1 (GeV)>2

3. A classical field model

A. Motivation
B. Hamiltonian and equations of motion
i) Discussion of H
ii) Ground-state field
iii) Small oscillations of the field
C. Variational solution for the ground-state
D. Construction of the electromagnetic current
i} Identification of the inelastic form factors
iiy Construction of a conserved current
E. Ground-state properties
F. Some comparisons with experiment
G. Extensions of the model.

While the model discussed in the last lecture has the advantage of incorporating
many general properties of the theory, it would be more satisfying to have a dynamical
description of the origin of the resonances. The problem of a complete theory of strong-
interaction dynamics is too hard, however, and we are forced to make models. In this
lecture I will discuss a very simple-minded picture of the nucleon [27, 28, 14] which views
it as a source sorrounded by a static, classical pion field. This field can then perform small
oscillations about its equilibrium value, and the normal-mode oscillations of the pion
field then provide a description of the excited states of the nucleon. The motivation for
studying a classical-field model is twofold. First, the higher excited states of the nucleon
correspond to many-meson states from a dispersion theory point of view, and present
a formidable challange to dispersion theorists. We might hope to gain some insight with
the classical limit of the theory, which corresponds to the presence of many (free) quanta.
Second, it is intuitively appealing that there are shape oscillations of the meson field in
the nucleon corresponding to the collective shape oscillations in nuclei, which show up
strongly in inelastic electron scattering. What is, of course, sacrificed in this fixedsource
mcdel is Lorentz invariance, and therefore the calculated form factors can only give
a qualitative picture if k? = m% The advantage of the model is that one can hope to have
a consistent, self-contained dynamical description within this framework.
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With these preliminaries, we proceed to write the hamiltonian [27]

1 i
H = Ejdx(cbad)ﬁV% V@t 1 g, p) + Zfdx(%%)2+

+ ! j dxp(x) @, p,+ d de(a * V1,90.)5(x). 3.1
2 2m

In this expression ¢, is a classical Klein-Gordon field, the subscripts o = 1, 2, 3 denote
isotopic spin, and repeated indices are summed. To the free Klein-Gordon hamiltonian
we have added a fixed source of strength Gs(x)/2m, a potential f(x) presumably coming
from various particle exchange processes to scatter the field inside the source, and a term
M, 9,)?/4 > 0 which ensures that H has a ground state and which will contribute a potential
barrier that makes it possible to have continuum resonances.

The energy of the system is clearly lowered if we set ¢, = 0, and we look for the
static, ground-state field <p2(x) by minimizing H

oH
=0 3.2)
o9,
This results in a non-linear, inhomogeneous differential equation for (pg
2 2 0. 0 0 G
(Vo =1 —2gppp— B®)] @ (x) = — 2—,’—170,(0 * V)s(x). (3.3)
If we now look for small oscillations of the field ¢, about the static value?
%, 1) = @2Ax)+1,(x, 1) 3.9
then n satisfies the equation
[O-#* =)~ Aesenln. = ALpies+ pralns. (3.5

The ground-state field then provides an additional potential in which 5, moves. To make
these equations tractable, a constant gradient source will be assumed

s(x) = is (1—x/a)8(a—x) (3.6)
na
and square-well potential
B(x) = —po(a—x). 3.7

An exact solution to Eq. (3.3) is very difficult. We can, however, make use of the

? The expansion parameter here, %, is roughly 72 = yjwy [27, 14].
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fact that it was derived from a variational principle, Eq. (3.2), and look for a simple
three-parameter variational solution [28, 14]. (Here x=x ]x|.)

PAX) = 1,0 - X)¢°(x)

o°(x) = ¢ x<a
e-e(x—a) e—u(x—-a)
= 1-—— - . .
cI: *a (1—¢)+ *a 8:| x>a 3.8)

In this expression it is assumed that 7, = ¢; = 0 so that 7 and o are simply fixed vectors,
the Pauli matrices, included only so that isospin and angular momentum can be treated
consistently. ® The function ¢%(x)is taken as constant over the source and decays exponen-
tially to the Yukawa tail.

The normal-mode equation for #, now becomes simply
[VZ+q*—o(x)]n, = O (3.9

where g2 = w?—pu? and the potential »(x) is sketched below. Equation (3.9) is just
a Schrodinger equation, and the presence of the additional repulsive barrier for x > a

2
-g(x-a) —,U(x—a)]
5?\02[ e
(1-€) + 7 €

______ ——)

v(x)

-B+52ac?

coming from the field @2 makes it possible to have continuum resonances as is the case
for a real nucleon. To get a first orientation, we shall assume that the repulsive barrier
is high enough so that it can be extended to infinity without appreciably changing the
solutions for the low-lying states inside the potential well. If these solutions.are denoted
by #um(x) normalized to

j.dxn;l;'l’m'(x)rlnlm(x) = 6nn’5ll’5mm’ (310)
and the field is expanded as

nax, t)—z o ane ] @3.11)

wnl

then the hamiltonian in Eq. (3.1) takes the form [27]

H=E'+ Y ouglcihcum+Cuntilnl: (3.12)

nlmm

8 The validity of this assumption can be checked by examining the coupled equations of motion
for the spin and isospin. It turns out to be a reasonable approximation for the parameters we shall use for
the higher nucleon resonances [28, 14].
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The classical hamiltonian is now expressed in normal modes and at this point the normal-
-mode excitations of the field can be quantized in the canonical fashion.®
The resulting excitation spectrum for a choice of parameters

pa =1
Ba*—5ic*a* = 16 (3.13)

is shown in Fig. 12. The spin 1/2 of the source must be coupled to the orbital excitations
of the pseudoscalar meson field to yield the states J = |/ +:1/2|, = = (—1)'*'. These states
will in general be split by some further spin-orbit interaction. Similarly, the isotopic
spin 1/2 of the source must be coupled to the isospin 1 (Eq. (3.11)) of the meson field to

SPECTRUM [KEEPING HIGHEST ¢ STATES]
po= | W-M
* (559

(M)
Buz- 5x czu2 =16 caL #

EXP
5 | .
os* 26 127 ?
- 10. 957
44 51
w2t .
EXCITATIONS HAVE 5/2+D—— 3 79 62
T=1/2,3/72 _
32" 56 47

”24» ! 26 27

12 —_— 0.0 0.0

172"~ -—1 -0

Fig. 12. Spectrum for the choice of parameters in the text. ua = 1, fa?—~5Ac%a? = 16. The energies are
computed for a square-well potential with infinite walls and the total energy in the CM system, W =
= (g% + 10" + (g} +m?)" is identified with the mass of the resonance [27, 28]

yield states with T = 1/2 and 3/2. The lowest 1/2~ S-state in this potential is bound, and
thus to get the experimental 1/2*+ ground state, it must be assumed that this S-state, which
samples the most interior regions of the nucleon, feels a weaker attractive potential than
the other states. The 1/2*, I = 1 excited state will in general get pushed up by its interaction
with the ground-state as indicated in Fig. 12. Thus the spectrum in Fig. 12 agrees roughly
with that of the nucleon, although the actual forces evidently show a much stronger spin,
orbital, and isospin dependence than this simple model suggests. The model does have
the merit that every nucleon resonance which has bzen seen can bz identified with one of
the levels in this diagram.

The next problem is to construct the electromagnetic current operator for this
system. Once the current and charge density have been obtained, the inelastic form factors

® The ground state of the nucleon is then [0>&y,, & m, where &, and p,, are two-component spin and
isospin Pauli spinors and 10) is the vacuum of the meson field excitations.
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can be identified through the expressions familiar from nuclear physics [29]

2]

1 ' oy Cou
A = i ) fA=oF
J=0

«Q

1 A N
P+ = 5 > I+l looP] - Gas

J=1
where

M) = [ j(k* ) Y Q)0(x)dx
T5u(k*) = j[V A Ji(k* )T, - jlx)dx

TR = § Lik* )51 - j(x)dx. (3.15)

To construct j(x), we first replace Vo — (V—ied)g in H and obtain, from the coefficient
of —eAd [28]

sym

G
Jx(x) = —[@AVie]T™+ 2—s(x)a,([t/\ eIy K=1,23 (3.16)

where the vector products refer to isospin. Now the aim is to construct a conserved current

)

P Ju = 050 that the first-order S-matrix for the interaction of the target with an electro-
x
73

magnetic field
S = je | d*x] (x)A(x) (3.17)

will be gauge invariant. In order to guarantee that the current be conserved, we define
— V:j = ¢ and use the equations of motion for ¢, to show

2 —sym .
-V-j=¢= tigaz\ %{g} + E—.s(x‘)O'K[VK(/)/\1:]”“’. (3.18)
3
Equations (3.16) and (3.18) are those obtained in the “‘standard theory” where the meson
field is first coupled to a non-relativistic nucleon source PH(x)ot,P(x) and then at the
end of the calculation the replacement $(x)a7,((x) - s(x)o7, is made. We have chosen
to symmetrize the indicated expressions in Eq. (3.16) and (3.18) for simplicity and to
avoid ambiguities in ordering. This symmetrization evidently makes no difference in the
“standard theory”. The first terms in Eqs (3.16), (3.18) are the familiar contributions
of a Klein-Gordon field, and it is this part of the current which forms the most believable
part of the model. The last two terms are “minimal” source contributions included for
current conservation.
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If the expressions (3.4) and (3.8) are substituted in Egs (3.16), (3.18), then to first
order in n, [27]

sym

Jk(x, 1) = —[(00/\Vx¢’0]3 ”[‘PO/\VK'IL—[’IAVK("OL'*'

G
+ —s(x)o[rAn]; K=1,2,3 (3.19)
2m
& G
—V-j=¢= [q)ol\ —5—;’:] + — s(x)o [V A1]5. (3.20)
t“]3 2m

The terms linear in #, are linear in the creation and destruction operators for the normal-
-mode excitations, Eq. (3.11), and therefore can create any of the one-quantum excitations
from the ground-state.

The expression (3.20) can be integrated once with respect to time to give

1 o on G -
o(x, ) = U +t)s(0)+ | oA — | + —s(x)ox[Vinat]s+
2 ot 3 2m

on
ot |,

where the first term is an integration constant and the last term bilinear in  has been
included since it is a known part of the Klein-Gordon charge density. #, is defined by

1 — it &
ﬁa =i E '\7—;3 [nnlm(x)e "t cnlm—h'c'] (322)
Wpy
nim

P
and satisfies %‘ =1, We may now make the following observations on the results
(3.19)(3.22):

i) In a “fully-linearized theory”, where the right-hand side of Eq. (3.5) is neglected
so that the potentials appearing on the left-hand side of Egs (3.3) and (3.5) are identical,
the relation

V- j+6=0 (3.23)

can be verified from the equations of motion (3.3), (3.5) and Eq. (3.8). Furthermore,
the total charge obtained from Eq. (3.21) is

-
}

i 1
0= jg(x, fdx = - (1413 + Hr,/\ ff’-] dx = - + T, (3.24)
2 ot |3 2

which again follows directly from a partial integration and the use of the equation of motion
(3.3), (3.5) and Eq. (3.8). Since this is the desired definition of Q, and [Q, H] = 0 when the
normal-mode excitations are quantized, our definitions of j and p are satisfactory from
this point of view.
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31°
group [25]. The background resonances which are also thought to resonate in this region have also been
included. Note the ordinate must still be multiplied by wpa(ca)? = 0.010 to get the experimental form
factors

Af:2+] f_Iz)] Jralca)® for the 5/2+, 1/2 (1688) resonance region [28, 14]. The daia is from the CEA

if) In the present theory where the right side of Eq. (3.5) is retained and computed
from Eq. (3.8), it is necessary to add terms

8¢ = 2U¢")(e - D)z A 7l (3.252)
8o = 2X(¢")%(o - D)l A 1l (3.25b)

to have Eqs (3.23) and (3.24) follow identically from the model equations of motion.
With the parameters we shall use, these terms do not play an important role in the theory
[28, 14]. They have the disadvantage, however, that they depend on the parameter A which
is only very poorly determined in our calculations. In general, we have preferred to use
expressions (3.19) and (3.21), regarding these as approximations to the current and charge
density in the “standard theory”.



The current (3.19) and charge density (3.21) have ground-state expectation values,
leading to the following expressions for the charge form factors

$k¥) = Gyk*) = [ e s(x)dx (3.26)
and for the meson contribution to the anomalous magnetic moment form factors
dm ([ 3j,(k*x

2y = 2 [ 2 ooy an (327
3 k*x

A(k*) = 0 (3.28)
Wi(GeV)
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Fig. 14. Resonance spectrum for the square-well potential with a square-well barrier described in the
text. The ordinate is the integrated square of the wave function inside the barrier

T
P; = [dxiqRy (x)|*'Y},' in units of 1/u
0

In addition, the pion-nucleon coupling constant can be related to another ground-state
property, the Yukawa tail of the pion field, and it follows from Eqs (3.8) that

G2 2
Jax = 4“N (;) = 4ne*(ca)’e® (3.29)
n \2m

In Refs [28, 14] the implications of this model are compared with experiment. The
parameters used there are

ua =1
pa?—~5ic?a? = 16

Sicta? = 40 (3.30)
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chosen to fit the spectrum (Fig. 12). The last relation comes from demanding that the
repulsive barrier be high enough to make the states we are interested in show up as reso-
nances.!® Using these numbers, ¢, ¢, and

G

are obtained by minimizing E, using the variational form (3.8) and a value

uafca)? = 0.010 (3.32)

N*(l520)
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ot ] ]

2
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Fig. 15. dajy/dog; at 6° for the 1520 MeV region in the classical-field model [14]. (Both theory and experi-
ment are divided by the experimental do,) — see text). The experimental points are from Ref. [4]. The
contributions of the 3/2-, 1/2 (1520) and 1/2-, 1/2 (1535) states calculated in the model are shown separately

is obtained by fitting the height of the inelastic form factors. One example of the fit to
the inelastic form factors obtained with these parameters is shown in Fig. 13. This is for
the 1688 MeV resonance and the experimental points are from the original work by the
CEA group [25]. Here all the known individual contributions in this resonance region
are computed using this model. Note that the 5/2+, 1/2(1688) again dominates the spectrum.
Some further consequences of this version of the model are:

i) The same normalization (3.32) fits the strength of the 1525 and 1950 MeV resonances,

10 7 cannot be too large, for then the zero-point oscillations of the field become important [30, 27].
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and the model gives qualitatively the correct overall shape for these form factors. These
curves are given in Ref. [28]. One problem is that the presence of the sharp square well
and repulsive potentials gives rise to diffraction minima which are not seen experi-
mentally.

if) The charge and magnetic moment radii computed from Eq. (3.26), (3.27) are
() = ((r1yp)'? = 0.89 fm
(Krdy)'? = 1.04 fm,

T T TTTFT
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T lll||||

el
G:6°

)
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Fig. 16. Same as Fig. 15 for the 1688 MeV region. The contributions of the two spin 5/2, and two spin 1/2
states are shown separately

These are to be compared with the experimental values of 0.8 fm. Thus the size of the
nucleon is approximately correct in the model.

iii) Using Eq. (3.32), which was determined from the inelastic form factors, Eq. (3.27)
gives 2'(0) = +0.6 while the experimental value of this quantity is A"(0) = +1.85. This
is at least in the right ballpark.

iv) Equation (3.29) and the parameters above give £, = 0.01 while the experiment
value is f;% = 0.08. This quantity is only very poorly determined in the model since it
depends on how the field itself penetrates the repulsive barrier out to the tail. Again, the
number is at least in the right ballpark.
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Pritchett [14, 31] has recently extended this model in several ways:
i) In an attempt to eliminate the spurious diffraction minima, the excited state wave
functions are computed as actual continuum solutions in a potential of the form

vix) un =11
=12
v=6.3u°

V=30

whose parameters are chosen to give the spectrum shown in Fig. 14. In this picture the
widths of the resonances can also be calculated. The resulting spectrum is not unrea-
sonable. Again, the 1/2-, / = 0 bound state must be artificially pushed to high energy.
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Fig. 17. Same as Fig. 14 for the 1950 MeV region [7/2*, 3/2 (1950)]

ii) Equation (3.26) is inverted using the experimental charge form factor to find
a more realistic source function s(x).

iii) Equation (3.27) is inverted to find a (smoother) form for the ground-state field ¢q(x).

i) P(x) is determined from the relation v(x) = B(x)+ 5A[¢%x)]* and E° is still mini-
mized yielding relations on the coupling constants in the model. The values 4 = 20 and
G = 12 are consistent with these restrictions and suppress the S-wave contributions as
indicated by photoabsorption. (Pritchett includes the terms (3.25) in his charge density.)

All the parameters in the theory are now determined and Figs 15-18 show a comparisen
between the theoretical values of do, at 6° and the SLAC data (both theory and experiment
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have been divided by the experimental value of do, as explained previously) for the 1525,
1688, 1950, and 1236 resonances. The general shape and magnitudes are fairly good (with
a few noticeable discrepancies) except for the 1236 where the theoretical curve (dotted
line) is too low. The ‘‘highest-/” resonances again dominate the observed resonance
regions over most of the range of k2
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Fig. 18. Same as Fig. 14 for the 3/2+, 3/2 (1236) level. The broken line is the result of Pritchett’s calculation.
The solid line is theory X 5

The model as developed so far is a very naive one. Even within the framework of the
model there are many improvements that could be made such as finding a mechanism for
the generation of the potential f(x), including the vacuum fluctuations of the meson field
correctly [27], and taking some steps towards making the model Lorentz invariant. Despite
its shortcomings, the model does provide a dynamical framework in which to investigate
the electromagnetic properties of the nucleon, and the interrelations between these quanti-
ties, on a consistent basis.
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