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A MODEL FOR DIFFRACTIVE PRODUCTION OF PARTICLES
IN HIGH-ENERGY COLLISIONS
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The general ideas of the Good and Walker diffraction dissociation mechanism are
reviewed and a proposal of a specific realization of these ideas is presented.

The model, developed by Czyz, Kotanski and myself, is based on the idea that the
interacting particles should be considered as fluctuating objects, During the collision process
these virtual fluctuations become real observable states. Thus, the model can be viewed as
a generalization of the vector dominance model of ¢ photoproduction.

The model explains all essential features of diffractive production and it provides
many important tests, particularly for the diffractive production from nuclei.

1. Good and Walker mechanism

The fact that the absorption of the incident light by the target implies (among other
things) the elastic scattering of the wave is a well-known optical phenomenon. Such ab-
sorptive (diffractive) elastic scattering is characteristic to the interaction of any wave with
the absorbing medium and was actually one of the basic observations proving the wave
nature of the light.

The main characteristics of diffractive elastic scattering is that the scattering amplitude
is dominantly imaginary and the cross-section depends only very weakly (if at all) on the
primary energy. Since all the evidence we have about the elastic scattering of particles at
high energies is consistent with these predictions, it is now commonly believed that diffrac-
tive scattering is a dominant mechanism also for elastic scattering of particles wave. In
this picture the absorption is caused by numerous inelastic interactions appearing in the
scattering process. They play an analogous role as the excitation of the absorber caused
by the absorbed light (that is the heat production in the absorber). Good and Walker [1]
pointed out that the absorption of the incident wave can lead not only to elastic but also
to inelastic scattering of the incident wave. They proposed that it is therefore natural to
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expect a similar phenomenon in the scattering of high-energy particles. It was called
diffractive dissociation.

The most characteristic feature of the inelastic scattering produced by such a diffractive
interaction is that, similarly as elastic diffractive scattering, it should be essentially energy
independent. The existence of such inelastic chanmnels with energy-independent cross-
-sections is now a very well established property of high-energy interactions. It is therefore
of considerable interest to find a proper description of the diffractive inelastic scattering.

The basic idea in the argument given by Good and Walker was presented on the
example of absorption of the polarized light by an anisotropic absorber. Let the incident
light moving in the z-direction be polarized in the direction n = (n,, n,) (orthogonal, of
course, to the incident direction: z). Let this light be absorbed by an absorber. Assume
furthermore that absorption depends on the direction of the polarization of the incident
wave. One may imagine, e. g., a small Nicol prismat, oriented in such a way that it stops
all light polarized in the direction of the x axis and does not affect at all the light polarized
in the direction of the y axis.

The wave function of the incident light can be written as a superposition of waves
polarized in x and y directions:

Yo = NP+, 1.y

The component , is unchanged during the scattering. Consequently, there will be no
elastically scattered wave polarized in y direction, and the scattered light is fully polarized
in x direction. Thus, the scattered light has different polarization from the incident light,
and we conclude that the absorption caused the inelastic scattering. To see how big is the
cross-section for inelastic scattering, we can analyse polarization of the scattered wave
with respect to the direction of polarization of the incident wave (n) and the orthogonal
direction (nxz). We obtain

T = N @t NPy .. (1.2)

The ratio of inelastic to elastic cross-section is thus (n,/n,)%

The example we considered can be easily generalized for more general absorpfion
properties of the target. It is instructive to write down the explicit formulae.

Assume that the target is characterized by two absorption coefficients #, and #, which
describe the absorption of the light polarized (respectively) in x and y directions.

Furthermore, assume that no direct transition from x-polarized to y-polarized light
is possible by the interaction. In other words, x and y directions are eigenvectors of the
absorption matrix, and 7, and 5, are its eigenvalues.

Consider now the scattering of polarized light by this target.

The incident wave can be written as

Yu = nxwx—*'nyWy (13)

where v, and v, represent the waves polarized in x and y directions. The outgoing wave
(after absorption) is

Y = ﬂx"x%'i"?y"y’/’y- (14)
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Thus, the scattered wave is given by

Vo=@ = (1= +(L—n)np, =

= Aa¥nt Ainet¥axz (1.5)

where £, and 4;,., are elastic and inelastic scattering amplitudes. It is easily seen that
Ao = m3(1=n)+ny(1—n,), (1.6)
Ainet = M1, — 1) (1.7)

The formula (1.7) is very instructive. It shows that the absorption will always produce
inelastic scattering, unless

(i) The incident light is polarized along the directions of an eigenvector of the absorp-
tion matrix (n, = 0 or n, = 0).

(/i) The absorption coefficients #, and 5, are equal, that is the absorber is isotropic.

Before we extend the argument presented here to the scattering of elementary particles
it may be worth while to emphasize that, although we write explicitly only the wave
function of the incident light, we actually implicitly considered also the production of
many other final states, responsible for the absorption. In this case these states are the
various excitations of the target. They are orthogonal to the states (1.3) and (1.4), and
their role is just to provide the absorption of the incident wave.

To see how the ideas presented above can be applied to scattering of particles at
high energies, consider the scattering of a nucleon on any target. The initial state consists
of nucleon and target. Assume the nucleon has very large momentum in the target rest
frame (infinite momentum limit).

Let us consider at the same time other states, containing some extra particles (say
pions). all of them also moving very fast (their momenta must bz finite fractions of total
momentum of the whole group in the target rest frame), and the unexcited target. We will
denote such a set of states (including nucleon) by |7.,~>, i=0,1, 2... Note that the
states with extra particles moving slowly in the rest frame of the target or in the CM
system of the collision are excluded from the set IL)I.

We are interested in the matrix elements

Q| T)A;». (1.8)

Good and Walker proposed to calculate these matrix elements (in close analogy to
the optical example considered above), by assuming that the set of states |/~, > can be

1 The set of states ]2,) i = 0,1, ... is analogous to the set of different polarization states of light
iy and Y, - and the unexcited absorber in the example discussed above. All other states are analogous
to the states with excited (heated) absorber. In the scattering of elementary particles the distinction between
the two kinds of states is of course not so obvious as in the optical example of Good and Walker. It is
hoped, however, that at very high energies the |4,> states which contain only a very fast group of particles
will be better and better separated from other states which are responsible for absorption and which presum-
ably will contain the products of **pionization”, i.e. slow particles in the over-all CM system.
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expanded into another set lli) with the property that all states
are only absorbed.
Thus, we consider a set of states ]it,—), which are linear combinations of l)f,-)

;> when scattered,

|}~i> = Z cij|zj>a (1.9
J
2> = ¥ dijfa (1.10)
J
and which satisfy the condition
T|2; = (L—n)|ap+ kZmlm) (L.11)

where all states ] U,y are orthogonal to the set l). ;» and, consequently, also to the set ‘; D2
_ For instance in the single pion production in N—N collision 110> is a nucleon and
V.1> is a m-nucleon state erc... Then ]ﬁ.") and [ll> are linear combinations ]Zo> and
|11>. The states [ > are all other states produced in N— N interaction at high energies,
e. g. the target excitations, the pionization efc. The condition (1.11) expresses the require-
ment that the states |A >, when scattered, are subject only to elastic diffractive scattering
(caused by absorption induced by production of the inelastic states l u;y) i. e. there are no
transitions between different |4;> states. We call the states belonging to the |2> set,
the diffractive states.
Using (1.9), (1.10) and (1.11) we obtain

<§;|T!;J> = (1—npd;— ;(ﬂk“"?j)djkckr (1.12)

This is equivalent to the Good and Walker formula.

As emphasized by Good and Walker, the inelastic scattering (which is contained
in the second term of (1.12)) is different from zero only if the absorption coefficients for
different |/1,~> states are different.

As seen from formula (1.12) in order to calculate the matrix elements (Z,»|T|Zj>, it
is necessary to specify the absorption parameters 7; and the expansion coefficients ¢;; or
d;; completely unknown at this stage. In fact, the formula (1.12) is so general that it does
not seem to have any predictive power.

In order to obtain some possibilities of calculation of matrix elements (1.8) we have
to make more specific assumptions, that is to propose a model for expansion coefficients
and absorption parameters entering (1.12). An attempt in this direction will be described
in the next Section.

2. A model for diffractive dissociation

As remarked in the previous Section, in order to make the Good and Walker idea
a practical tool for calculation of the cross-sections, it is necessary to specify

(i) the absorption parameters #; of the diffractive states {Z,.> on the target,

(if) the expansion coefficients of the observed real states i}i > in terms of the diffractive
states |),,~ >
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In this Section 1 would like to describe a model specifying these parameters which was
developed recently by Czyz, Kotanski and the author [2}.

The difficulty in determination of the absorptive parameters 7, is that the states ;A,-)
are not the ones we observe in scattering experiments. Consequently #; cannot in general
be obtained from elastic scattering data. However, an important simplification can be
obtained by exploiting the experimental evidence that the cross-sections for diffractive
production processes are about one order of magnitude smaller than elastic ones. A pos-
sible way of including this information into the formalism of Good and Walker is to
assume that the transformation from ]X) set to I/Ii> set is not far from unity:

¢ij = 0;;+¢&; 2.1
where ¢ is small and &2 may be neglected. Then
di; = 6;;—&; (2.2
and the formula (1.12) becomes (to first order in &):
<Ii!TIIj> = (1=n) 6;;+(1—n) &;;— (1 —n;) &;. (23)
Thus, the elastic amplitude is
Gi|T|Zy = 1~n,. (2.9)

The formula (2.4) shows that the absorption parameters 5; are determined by elastic
scattering of real particles, (in this approximation). Obviously, this result greatly
simplifies the interpretation and computation of absorption parameters.

The absorption of the initial diffractive state is then easily determined from elastic
proton-proton scattering.

A difficulty arises, however, if one tries to determine the absorption of a multiparticle
system (e. g. =N system). Then, it is necessary to provide a model for elastic scattering of
such a system cf real particles from the target. The simplest possibility, which we will
exploit in this paper, is to assume that this elastic scattering is correctly described by the
Glauber model.

This assumption is by no means obvious, but it seems reasonable to exploit its possi-
bilities. The important point to notice at this stage is that, at least in principle, any assump-
tion of this type can be verified by measurements of elastic scattering of the considered
system of real particles off a given target.

The inelastic amplitude from formula (2.3) is the difference of the two terms:

<1i‘T|1j> =(l-n) gij“‘(l_rlj) &ij. (2.5)

This formula is illustrated in Figure 1, which shows that the amplitude for diffractive
production of particles is proportional to the difference between the absorption of the
produced particle and the absorption of the incident particle.

It should be remarked that the Glauber model approximation which we propose to
use for calculation of the elastic scattering in the final state is not necessarily correct and
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perhaps should be substituted by some better approximation. However, the great ad-
vantage of such a model is that, after it is introduced, the production matrix element can
be expressed through the absorption parameters of real particles and the expansion
coefficients &;;.

Thus, at this stage, only the expansion coefficients are left undetermined. To calculate
them, we propose the following physical interpretation of the expansion (1.10).

Fig. 1

The incident particle (which subsequently dissociates diffractively) is viewed as a
fluctuating object with various fluctuations possible. For instance, a nucleon can fluctuate
into m-nucleon, nr-nucleon system efc.... We interpret the expansion coefficients g;
as the probability amplitudes of such fluctuations. Such an interpretation implies an im-
portant fact that the properties of the expansion coefficients ¢;; are independent of the
interaction with the target. There are two important consequences of this:

(a) All internal quantum numbers (except mass and spin) of the dissociated system
should be the same as those of the incident particle.

(b) The expansion coefficients &;; are the same for scattering off any target.

The property (a) follows from the fact that the interaction Hamiltonian responsible
for the fluctuation of the incident particle must obey the strong interaction selection rules.

Thus our model provides automatically the selection rule that the diffractive produc-
tion of particles is possible only if there are no internal quantum numbers exchanged in
the r-channel of the reaction.

The property (b) guarantees a very strong predictive power of the model. Namely, it
relates the diffractive production on different targets. Thus, the comparison of diffractive
dissociation on different targets (especially for various nuclear targets) is of crucial import-
ance for our model, because it would check the ‘“universality” of the expansion (1.10).
Incidentally, let us note that the “universality” of ¢;; does not imply that the diffraction
dissociation is identical for different targets because the absorption coefficients #; are
different.

It remains to give a prescription for calculating the expansion coefficient. As we have
already mentioned, according to the experimental evidence the cross-sections for diffractive
production processes are about order of magnitude smaller than the elastic scattering, hence
we expect g;; to be small and we tentatively propose to compute them from a perturbation
expansion. Obviously this should be considered as a rather preliminary suggestion. It is
made just in order to make the simple calculation possible. We expect that the detailed
comparison with the data will require probably fairly complicated ¢;;, and the important
point is the universality property discussed above. To summarize, we have proposed
a physical interpretation of the Good and Walker parameters which naturally incorporate
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@ the smaliness of the diffractive production cross-section compared with the ela-
stic one,

@ the experimentally established selection rule of no internal gquantum numbers
exchange in the t-channel of the diffractive process.

Our interpretation has a further advantage in that it suggests a crude way of calculat-
ing (or measuring) the Good and Walker parameters.

Furthermore, which is perhaps the most important aspect, it gives a clear physical
meaning to the Good and Walker formula and thus allows one to develop the intuition
about the diffractive processes in the direction which has not been very much explored in
recent years. It remains to hope that this may lead to a better undertanding of diffraction
dissociation.

Finally, let me remark that our model is very analogous to the Cheng and Wu model
of high energy electrodynamical processes {3]. Actually, the investigation described here
was greatly influenced by their work. In particular, their model can also be considered
as a particular realization of the general scheme of Good and Walker.

In the next Section I will proceed to develop a little more formal aspects of the model,
in particular the formula for the transition matrix elements.

3. Explicit construction of the production matrix elements

Let us consider the coherent production process in which the particle a produces an
object b on target T. The object b may be one particle or a group of particles b, ... b,.
According to our model the production amplitude is a difference of two contributions
(see Figure 1):

M4, kD) = D4, KDY — 54, kD), 3.1
M4, kD) = Y (M) (kD) (3.2)
M4, kD) = [ dp™ ... dpPag(p)r*(4, p©, k), (3.3)

where 4 = Zk') is the momentum transfer to the target, k¥ (i = 1, ..., n) are the final
momenta of the produced particles b, ... b,, ag is the probability amplitude for the fluctu-
ation, y9 is the profile function of the particle a on the target T and I'® is the profile
operator of the set of particles b, ... b, on the target T.

Since both au(p'Y, ..., p™) and I'YU4, pV—k™), .. p™ —k™) contain the §-func-
tions which guarantee the conservation of the total 3-momentum of the system during
fluctuation, as well as the longitudinal components of the momenta of all particles
in the elastic scattering, the formula (3.3) can be integrated over longitudinal components
of p!"), ..., p and be written in the form which contains only the integration over the
transverse momenta

AOA KDy = [P0 dPp Vag(pt, ..., p™) x

X 7O, P~ kD, ., PP —KD). (33)
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As 1 have already stressed in the previous Section, the most important feature of the
formulae (3.1)-(3.3') is that the dependence on the target enters only the quantities y
and 7®, whereas the fluctuation probability amplitude depends only on the incident
particle and is entirely independent of the target.

A serious complication arises from the fact that the elastic scattering of the final
system b = by, ..., b, on the target is expressed in formula (3.3) by the scattering operator
7@ (4, pV), ... pP) and not by the elastic scattering amplitude of b which would read

®(4) = <b|r|p> = [a*p] ... ®pPan(p'”, ..., p™) x
x 724, p =KD, .., PP —kDyan k', .., k™KL, L, dPKD). (3.4)

Since the a;, (p'"), ..., p'") enters the formula (3.3) linearly, the result of (3.3) seems much
more sensitive to the details of the fluctuation probability amplitude a,(p'", ..., p™)
than the elastic amplitude (3.4). Therefore the interpretation of the quantities entering
(3.3) is fairly complicated, except in the case when the produced object b consists of just
one particle.

In such a case the integration in the formula (3.3) is trivial and we obtain

(8, k) = ag(k) (YD)~ (D)} (3.5)

This formula is just the one we met already in the previous Section. The profile functions
»@ and y® are normalized as follows

tot

g
W =0)=—, (3.6)
daelastic n 2
= G Al (3.7)

I would like to stress once more that the simple formula (3.5) is obtained only if the
produced object consists of just one particle. Otherwise both calculations and interpreta-
tion are much more complicated. From the formulae (3.5) and (3.6) we see explicitly that
if the total cross-sections of particles @ and b on a given target are the same, the forward
production cross-section of the b particle should vanish. Thus, the immediate consequence
of our model and the experiments of the coherent production of unstable systems on
nuclei is that the coherently produced objects like 4,, Q and B* bumps cannot be inter-
preted as elementary. Indeed, if e. g. 4, is interpreted as a single body without internal
degrees of freedom, the formula (3.5) should be valid. Since the experiments on nuclet
indicate that oy = 0,y [4], we obtain the result that the 4, bump should not be produced
in the 7N interactions. This conclusion clearly contradicts the data and the only way out
is to reject the formula (3.5), that is to admit that 4, is not an elementary object. As |
already pointed out, the formula (3.5) is valid for any target, provided the object b is elemen-
tary.

An interesting insight into the physical meaning of our approach can be obtained



29

by applying (3.5) to the production off nuclei. In this case the profile functions ' and
y"®) are given (in the optical approximation) by

Yo = [d?bi—e 2 " ®] (3.8)

where o, snd o, are the total aN and bN cross-sections and

+

T(b) = A | o(b, 2)dz. (3.9)

Here A is the mass number and o(r) is the density of the nucleus in question. Using (3.8)
and (3.5) we obtain
= T(b)_e- “7" T(b)

M (A) = ag(k) [ d*b{e” } (3.10)
but ag(k) can be determined from the experiments with free nucleons:
ag(k) = M4 = 0, k) [Y{(4 = 0)—y{(4 = 0)] (3.11)

where My (4 = 0) is the forward production amplitude off nucleon.
Using (3.6) we obtain

ag(k) = M (4 = 0) 2 (3.12)

Op— 0,

Substituting (3.11) into (3.10) we get finally

2
ANA) = M4 =0) ——

b a

_ CGa _%
f dble” 2 W 2", (3.13)

The interesting point about the formula (3.13) is that this is just standard optical model
formula [5] used for analysing the experiments of production from nuclei. Thus, in this
particular case our model gives results analogous to the standard approach. This I find
a rather pleasant feature because it indicates that the assumptions we made seem fairly
reasonable.

To conclude, we proposed a rather well-defined scheme of calculating the diffractive
production processes. It incorporates automatically the gross-features of the data. It
remains to be seen, however, whether it will survive the detailed comparison with experi-
ment.

The author would like to thank Professor W. Czyz and Dr A. Kotanski who greatly
participated in preparing this report. I am also grateful to Professor A. Goldhaber for
very illuminating discussions concerning the relation between the optical model and our
approach.
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