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COHERENT PRODUCTION OF PARTICLES IN HADRON-
-NUCLEUS SCATTERING (EXPERIMENTAL)

By H. H. BINGHAM
Physics Department, University of California, Berkeley*
(Presented at the XI'™" Cracow School of Theoretical Physics, Zakopane, June 8-22, 1971)

We review data on coherent production reactions from nuclei in », K, nucleon and
antinucleon beams of momenta above ~ 2 GeV/e. Characteristics of the dominant (“‘vacuum
exchange”) reactions and rarer (“w exchange’) reactions are summarized.

1, Introduction

Coherent production reactions are yielding new information on total cross-sections
for interactions of unstable particles with nucleons, on nuclear radii and shape parame-
ters, on quantum numbers of the produced states and on exchange mechanisms for the
production of states of known quantum numbers. [t may be possible soon to use informa-
tion from coherent reactions to estimate scattering amplitudes (and phases) of unstable
particles, transition amplitudes from one unstable particle to another as well as further
nuclear structure parameters.

Although a full understanding of coherent production reactions (‘“CPR”) will almost
surely require understanding of most of the domain of strong and electromagnetic inter-
action physics, the data available today on these reactions can be explained using only
a finite set of ideas. Many of these ideas developed to handle particle interactions with
structured targets (nuclei) are finding wider applications, e. g. to parton and quark model
analyses of the interactions of elementary particles in general (see Jackson’s review [2]
for a discussion of some of these analogies).

In these lectures I will briefly review some of the gross features expected for CPR’s
on the basis of some simple kinematical relations, nuclear form factor effects, and rota-
tional invariance. Then I will briefly recapitulate some of the available experimental
data reviewed in my talk last year at the Trieste conference [1] and discuss what new
data has come in since then. See Professor Goldhaber’s talks in these proceedings for the
current state of the theory, and Professor Biatas’ discussion of an exciting revival of some
older approaches with a new twist.
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Other recent theory reviews are by Margolis 3], Glauber [4], Stodolsky [5], Trefil [6]
and Fournier [7], and experimental ones by Bellini [8], Franzini [9], di Lella [10}, Czy-
zewski [11], Veillet [12] and Fisher [13]. For reviews of related topics not covered here
see: (photoproduction) Ting [14], Leith [15], Silverman [16], Diebold [17] and Lohrmann
[18]; (coherent elastic scattering) Bellini [19], Bertocchi [20], Glauber [4]; (K° regenera-
tion) Lee and Wu [21], Gilman [22] and recent conference proceedings [23]; (incoherent
production reactions) Margolis [3], Fournier [7], Glauber [4], Gottfried and Yennie [24].
For properties of the particles cited see the ‘“Wallet card” [25].

2. Kinematics

In the coherent production reaction
b+T— s+R n

b is the beam particle, T the target nucleus, R the recoil nucleus (normally in the same

state as 7, i. e. the ground state) and s is the state coherently produced. For CPR, the
4-momentum transfer squared

t = (s—b)? = (R=T)? )

{where the particle symbols now represent energy-momentum 4-vectors) is restricted by
the nuclear form factor to small values and reduces approximately to

-t~ ¢ =q 4L~ ~tatd] ©)

where q is the (small) three-momentum of the recoil nucleus (assumed non-relativistic)
in the lab system (“LS”), g, and ¢, are its components respectively parallel and perpen-
dicular to the beam direction

M2 — M2\2
tan = 5= Ba = ME= M2yt A= My = g~ () (@)
b
is the minimum momentum transfer required to produce an outgoing system of mass M,
from a beam of 3-momentum p,, energy E,, mass M,. Ep is the recoil energy and M,
the target mass. For coherent elastic scattering s2 = b2, 1,,;, = 0. For CPR where s2 # b?
it is convenient to define

, P
r = it_tmin[ = Zpbps(l—cos 93 = fqi ~ qi (5)

£

where 6 is the angle between the outgoing (p,) and the beam (p,) momentum directions
in the LS.

3. Characteristics of coherent reactions

In order for reaction (1) to be coherent over the nucleus, i. e. in order for the ampli-
tudes for the process b — s to add coherently from the various parts of the nucleus (nucle-
ons), the transition b— s must not ‘“‘mark” the nucleon on which it took vlace, i. e.
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the transition b— s must not leave information in the residual nucleus which could in
principle be used to determine which nucleon was struck. This fundamental condition for
coherence leads to some selection rules which are discussed below.

For reactions b — s of practical interest (e. g. 71— A, K— (), the beam momentum
Py 1s high enough that the corresponding wavelength

Afermis) 2rnh 1 <
ermis) == —— & ——— <
P»  Sp(GeVe)

1fm ()

i. e. A is much less than the range of nuclear forces (at least the transverse range), the in-
ternucleon distance in the nucleus and thus of course than the radius 1.12 43 in fermis.
Note that p, is then much greater than the Fermi momentum of nucleons in the nucleus.
Thus no nuclear rearrangement has time to take place in the neighbourhood of b or s
during their passage and the coherent production reaction can be described analogously
to electron scattering from a crystal, or light diffracting from an extended structure of
scatterers. As in these cases, then, we can expect the angular distribution of the outgoing
state s to be determined principally by the Fourier transform of o(r) the spatial distribution
of nucleons in the nucleus, /. e. by the nuclear form factor F(q)

F(g) = | d*re' " o(r).

Because nuclei are approximately spherical with diffuse outer regions, ie. can be
described approximately by a density function which is Gaussian in x, y, z, the nuclear

form factor is approximately Gaussian in g¢,, ¢q,, ¢. or approximately exponential in
tr —(qz+q;+q2)

|F(g)|* ~ &* )
where B is the “slope at small ¢ of the momentum transfer distribution.

2
B(GeV/e)™2 = <r3> = 8.6¢r*> fm? & 1147%(GeV/c)™? (8)

where \/<r2> is the rms radius of the nuclear density distribution g{ ). For carbon B =
=~ 60 (GeV/c) %, for lead ~ 380. The observed slopes are usually somewhat greater because
of absorption effects, however.

The momentum transfer distribution will normally contain factors other than (7),
of course, particularly approximately the shape of the ¢ distribution for the corresponding
reaction from a free nucleon. For most coherent reactions, e.g. those which can proceed
via vacuum exchange, this ¢ distribution is also exponential with slope characteristic of
scattering from a source the size of a single nucleon: B =~ 10 (GeV/c)-2

Most of the intensity of the outgoing s bzam will bz contained within a cone of half
angle 6,

nja  0.284-°

~

0 ~ KJ: ~ g;L < P —
ST pe P P Po(GeV/c)

®
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where the characteristic momentum transfer of the nucleus

T T

@ nuclear diameter = 2x 11247

~ 0.2847%(GeV/c) (10)

is ~ 0.12 GeV/c for carbon, ~ 0.05 GeV/c for lead. For momentum transfers much larger
than this, the nuclear form factor falls rapidly, i.e. the nucleus is unlikely to hold together
in the collision and the coherent cross-section becomes small compared with corresponding
b— s production in incoherent or nuclear break-up reactions. For a neon target, and
», = 7 GeV/c for example, §; < 17 mrad = 1°.

Correspondingly, the nuclear form factor restricts the momentum transfer

|f] < 0.07447"%(GeV/c)* ~
& 0.014 for carbon, 0.0022 for lead. (11

For light nuclei, the component of the momentum transfer parallel to the beam, 9>
which the nucleus can stand without breaking up, is similarly restricted by the uncertainty
principle

gasm. (12)

For heavier nuclei, where absorption is important, a should be replaced by a few times
the mean free path for interaction in the nucleus in Eqs (12)—-(14). Alternately we can
derive (12) by noting that in order for reaction (1) to be appreciably coherent over a spatial
region of the order of the nuclear diameter, a, the phase shift (ga) between incident (b)
and outgoing (s) waves across the nucleus must not be larger than ~ z, (sin 8 > 0 for
0 < 0 < 7). From equation (4) we see then that the nuclear form factor puts an approximate
limit to the mass M, that can be produced from a given nucleus at a given beam momentum

M? s M3+2q,p, S M3+2 G) Py & M242(0.2847 '%)p,. (13)

Thus the M, that can be produced from a given nucleus goes as \/'p_,, and for a given p,,
as A-13, For M} = 1GeV?, p, = 5GeV/c, we find g = 0.1 GeV » the characteristic
momentum transfer for light nuclei.

From equations (7) and (4) we see that the cross-section for reaction (1) contains
a beam momentum dependent factor

g ~ e BM2[2p)? (14)

Thus from this 7, effect alone, the cross-section for 7 — 4;, or KX— Q from light nuclei
should increase by roughly a factor 2 from ~ 5to ~ 15 GeV. Heavy liquid bubble chamber
experiments have confirmed this [26, 27].

In addition to this exp (Bty;,) factor in the beam momentum dependence of the
coherent cross-section for a particular reaction (1), we expect, on a Regge picture that

J’ do 1 do
o= dt —~ — —

dt ~ B dt ~ SZu(O)—Z ~ pga(O)—Z (15)

'min
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because the nuclear form factor restricts ¢ (¢f. Eq. (11)) to values near 0. Here «(0) is the
Regge trajectory intercept at ¢ = 0. For Pomeron exchange reactions we expect «(0) ~ 1
so o ~ constant, for w exchange «(0) x 0.5 so we expect o ~ 1/p, for a particular reaction
(1), i.e. for a particular band of M,. Note that the total cross-section for a particular
reaction (1), 7.e. integrated over M, should thus increase with p, (for Pomeron exchange
processes) as the exp (Bt,;,) factor permits higher and higher masses to be coherently
produced while cross-sections for production of lower M, saturate and remain constant
with increasing beam momenta.

Thus we have seen that the dominant coherent production reactions, i.e. those which
can proceed via vacuum exchange, should have cross-sections rising at first according
to equation (14) then saturating and remaining roughly constant with p, for a particular M,
band and slowly rising with energy for all M and should have momentum transfer distri-
butions dominated by the nuclear form factor (Eq. (7)).

4. Selection rules for coherent production reactions

In order for the amplitudes for b — s production to sum coherently over the nucleus,
the struck nucleon must not have its state changed in such a way that which one it was
could be determined in principle by measurements on the residual nucleus or nuclear
debris.

Thus the struck nucleon must not, for example, have its charge or strangeness altered.
Correspondingly the “particle” exchanged between the nucleus and & in reaction (1)
must have I, ., =S, = 0. (We neglect possible transitions between isobaric analog
states which could proceed via I = 1 exchange [29] and conceivable similar transitions
to analog hypernuclear states.) Thus in the transition b— s,

AL = AS = 0. (16)

Because nuclei are not eigenstates of C (charge conjugation) or G = Cexp (inl,), the
exchanged particle can have C either + or — and G either + or —; thus in the transition
bos

Cflip = yes or no
G flip = yes or no. an

Because the amplitude for an isospin 1 particle to couple to a proton has sign opposite
to its amplitude to couple to a neutron we expect the selection rule I, = 0 or

Al = 0. (18)

This rule is exact for nuclei with N = Z and approximate otherwise (good roughly to
order (N—2Z)/A4 in amplitude, thus to at least this order in cross-section). We assume here
that the neutron and proton distributions over the nuclear volume are the same. Viola-
tions of this selection rule may provide a means for observing such #n, p distribution
differences.



For a spin 0 nucleus (e.g. “He, *2C, 2Ne, 2°8Pb) to recoil coherently in its ground
state only natural parity, i.e. JE =0+, 1-, 2+, etc., can be exchanged in the ¢ channel
i.e. 0t + 0" can make only J = I, P = (—1)\. This is true not only in the forward direction
but at finite angles and is not modified by absorption effects. Nuclei with non-zero spin
can exchange unnatural parity i.e. fo = 0, 1+, 27, etc., but only to the extent that the
nuclear spin is coupled or, away from the forward direction, using the factor p, x q to
provide the unnatural parity. Unnatural parity exchange is decreased in addition by
a factor roughly (nuclear spin/24) in amplitude. Where absorption is important, however,
A is reduced to an A effective while the nuclear spin presumably comes mainly from outer
nucleons where absorption effects are less important. Thus this suppression factor may not
be much bigger than typically ~ 10 in amplitude even for heavy nuclei. Nevertheless
selection rule (19) is a good approximation (better than 1% except possibly for the
deuteron) for the intensity when the additional suppression due to smaller spin couplings
is taken into account. Thus we expect

JE =0+ 1-, 2%, etc..., only
A4J, ., s = any integer (19)
APy s = (=1

The amplitude for reaction (1), expressed in terms of helicity amplitudes can be

written [3]
0 [4—pl
f}.is;).blT ~ (sm i) (20)

where the A’s are helicity indices for the incoming and outgoing particles of reaction (1)
and A = A,—Ap, pt = A;—Ag. For coherent reactions the nuclear spin, if not zero, is
uncoupled (to a good approximation except possibly for the deuteron), so A—pu =
= A,— A, Thus if the outgoing states has A; # 4, e.g. non-zero helicity for = or K beams,
the coherent emplitude must vanish in the forward direction. This leads to the approximate
selection rule

}’s = A’b' (21)

An experimentalist’s mnemonic for A, = 4, (and (19)) is to picture the coherent
productin reactions as proceeding by ‘“‘elementary vacuum”, ie. J* = 0+ exchange.
Viewed from the s rest system (“RS”) we have a head-on collision of the beam particle
and a O* particle. Their relative orbital angular momentum, /, is perpendicular to their
momenta so m = J, = 0 for n or K beams, = +1/2 for p or p beams, = +1 for photon
beams. For 7 or K beams only J = I, P = —(—1)' is then allowed for s i.e. s must have
unnatural parity (0-, 1%, 2= etc.). For nucleon (or antinucleon) beams any J¥ is allowed
(e.g. 3yt vial =2, 3,7 via |l = 1), but A, = +1/, i.e. the outgoing state is aligned with
the same J. as the beam.
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More precisely, one can note [30] that for an unnatural parity 0~ beam (e.g. 7, K)
producing a final state s of unnatural parity (e.g. 4;, @), the forward amplitude need not
vanish for A, = 0 while it must vanish for |ls |> 1. For 0~ beam producing a state of natural
parity (e.g. n— 0, K- K* (890) via natural parity exchange A, = 0 is forbidden (to make
e.g. J¥ = 1- from 0~ plus (natural JF) requires relative orbital angular momentum / =
= J,, or J,,+1. Parity conservation (requires /+J,, = even, so / = J,,. Since [, =0
to make a vector meson with J, = 0 would require J,., = 0 which is forbidden: the
Clebsch-Gordan coefficient

A= o I 0,0, |J;, = 0, J, = 0) is zero for I+ J,+J, = odd).

In general [30] J, = O states are not populated when a natural (unnatural) parity state
is produced by a 0~ beam via natural (unnatural) parity exchange.

Thus to return to the case of a 0—— |~ transition, only unnatural parity exchange
can contribute to a non-zero forward amplitude while natural parity exchange populates
only A, = +1 which by (20) must vanish in the forward direction. Thus we expect 1~
(and other natural parity states) production to be heavily suppressed relative to 1= (and
other unnatural parity states).

We conclude that of all the 30 cdd mesons listed in the wallet card only a few can
contribute to the dcminant coherent production reactions. Exchange of isovector mesons
%, @, 0, A;, Ay, B, etc. is forbidden (approximately) by (18); exchange of isoscalar but
urnnatural parity mesons #, 1/, D, E, efc. is forbidden by (19). Note that © exchange,
which dominates many free nucleon reactions is doubly forbidden — it violates A7 = 0 (18)
and is unnatural parity exchange (viz. (19)). Of clearly established mesons (or exchanges)
only the isoscalar natural parity mesons P, P, f° (and & (with G = +, C = +) and 9,
¢° (with G = —, C = —) can be expected to contribute importantly. For K and nucleon
beams there is no difference between G = + and — exchange (although C exchange is

TABLE IiI
Rare coherent X channels

Beam momentum l Cross-section

Channel

| \
and target I Reference (er al. always) f I1 (ubjnucl.)
; | |
10 K+ propane-freon | Haguenauer 1970 [63] | Kta‘tma® R 2804-130
127K-d | Antich 1970 [64] | Kwtaad | 2148
| ; Ken—mtn~ 13 tzo
| - Ap 2+]
| i KAP; ! <1
12.7 K- neon ~ Daugeras 1971 [31] - Katwa (K-w)* 238160
i ! Kvraam (L— K3nr) 90440
_(1)0

* Mass Ko < 1.56 GeV correspornding to a branching ratio for the Q region of?—;— =
mtm
=7.5+1.8%
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required to regenerate K? from K2). For 7 beams n— =, 37, 5=, etc., only is allowed
(n— 2m, 4n etc. forbidden) for G = + exchange and only the reverse for G = — exchange.
For brevity in what follows 1 will refer to the first (G = +) group as ‘“vacuum”, the
second (G = —) as “w® exchange. Note that as far as selection rules are concerned,
Coulomb production (i.e. y exchange) is like (predominantly) w® exchange (with order
(N—Z)[A contribution of ¢® exchange).

5. Available data on coherent production reactions

Data available as of Spring 1971 (“pre Amsterdam”) on coherent production reactions
in 7, K and nucleon (antinucleon) beams is summarized in Tables I-V: dominant (‘“‘vacuum
exchange”) reactions n— 3n, n— 5n (Table I); K— Knn (Table 1I); rare K coherent
reactions (Table III); “w exchange” reactions (Table IV); and nucleon (antinucleon)
induced reactions (Table V).

TABLE V
Coherent production p, p
Beammomentum Reference No coherent Cross-section (ub/nucl.)
(GeV/c), target (et al. always) events Channel d visible corrected
| |
1.8 pd . Brunt 1968 [68] | 112+# prtae : 185+18
: 2 prt Al 342
2.1 pd Brunt 1968 [68] 97* I 170=18.
14 prtan® 2545
5.55 pd Evrard 1969,
Braun 1970 [69] 359 pretn 113438 220420
7.0 pd Antich 1970b
[64] 310 prta 26025 355+40
i 172 prtand 180422 250425
: 4 AK~ 342 40
2 AK-n® 242
28 pNe Huson 196870} 35+6** prta 470+ 100
STH8**% | prto- 750 +120
28nC O’Brien 1971 Many thousands pr
Cu 711 i
Pb ’u |

* Not counting those with fast d and invisible proton.
** Mp i < 1.6.
*** Mp nix < 2.6.

6. Techniques

Most of the experiments cited used deuterium bubble chambers (““DBC”), propane-
-freon or hydrogen-neon bubble chambers (“HLBC”) or nuclear emulsions. The shape
of things to come, however, is suggested by entries of two counter-spark chamber ex-
periments. There is (unfortunately) no published coherent work using helium (or xenon)
BC’s, nor helium (or neon) discharge chambers.
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Emulsion experiments are discussed in Professor Migsowicz lectures [66] so will not
be discussed here. Emulsions have the advantage of good spatial resolution (protons
of 2 0.1 MeV and light nuclear recoils of 2 1 MeV are observable, which aids in the
separation of coherent from nuclear breakup reactions). Statistics are normally very
limited, however, and =n%s are not detected directly so that normally little detail on the
characteristics of coherent reactions is accessible to emulsion experiments [13].

DBC experiments nowadays have up to some 10-20 events per microbarn (ub)
of cross-section, are unbiased compared with other techniques and about as precise as
any other technique. They can detect the deuterium recoil down to ~130 MeV/c (1 mm
range) and for events with no n%s produced at least, can work with the events with unseen
deuteron (3, 5, efc. prong events”). Some experimenters do not measure the 3 prong
events, however, which typically forces them to make ~309, corrections in extracting
cross-sections. The major limitation of DBC’s is that n%s are not detected directly and
at most one n° can be reconstructed kinematically (and this not very clearly at high energies).
There are proposals to surround a DBC with transparent walls (perhaps of scintillators to
participate in triggering) and an outer region of H,-Neon for y (thus 7% r®, ... etc.) detection
to remove this limitation but as yet no such experiment has been published.

HLBC’s can measure final states with one or more #%s (although beyond 2 n%s
sorting out the y’s becomes quite difficult at high energies). The a%s are reconstructed
about as accurately as charged tracks in the same chamber. Precision on charged tracks
is typically ~ 5 times worse in HLBC’s than in DBC’s, however. The nuclear recoil is not
detected directly but since 7%s are observed it is normally the only missing “neutral”
and can be reconstructed accurately enough to separate coherent from most incoherent
events. Aside from relatively poor precision, the major limitation of HLBC’s is that the
choice of target liquids 1s limited so far to (He), C, Ne (and Xe) for “pure” liquids (i.e.
containing only this nucleus plus possibly hydrogen) and to mixtures of C, F, Cl, Br, etc.
for freons.

Counter-spark chamber experiments can vary A4 freely and can accumulate statistics
at Jeast an order of magnitude faster than BC’s. They can be triggered on coherent candi-
dates, e.g. by vetoing events with large momentum transfer, y’s at wide angles, counting and
identifying outgoing tracks, efc. So far no counter study of coherent final states including
7n%’s has been published, however, and those involving only charged tracks have had
relatively large corrections for apparatus asymmetries and biases. It is clear, however,
that much future information on coherent reactions will come from electronics experi-
ments.

7. Dominant (‘“‘vacuum exchange”) reactions

The characteristics of the dominant coherent production reactions = — 3z, Sz (Table 1),
K — Knr(Table 11) and n— nn, or n— nnn (Table V) are epitomized in Figs 2-18. Fig. 2
shows typical distributions of 7, the momentum transfer from target to recoil nucleus
(or t' = t—t,;,). As expected (see theoretical ¢’ distributions in Fig. 1, calculated by
Fournier [7] in a manner similar to that described in Professor Goldhaber’s lectures), there
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Fig. 1a. Differential cross-section for coherent production from deuterium (divided by correspanding
production differential cross-section from hydrogen). Calculation of Fournier [7} for o}, = 25 mb, o, =
= 40 mb, o = g = +0.2, My = 0.493 GeV, M, = 1.3 GeV, free nucleon scattering slopes 4, = 1, =
= 8 (GeV/e)2, Aps = 10(GeV/c)2, p, = 12.7 GeV/c. Note that the double scattering (i.e. production
from one nucleon preceded or followed by elastic scattering from the other) term reduces the forward
ratio from 4 to about 3.3, produces a dip (at # & —0.25) where the single and double scattering amplitudes
are equal in magnitude, and dominates beyond; b. Differential cross-section for coherent and incoherent
production (divided by the forward hydrogen differential production cross-section) from Neon for Q=
= 56 MeV/c, 0, = 0, = 20.9mb, &, = &g = 0, };, = 4, = 7.3 (GeV/c)~%. From Fournier {7]. The difference
between the 2 exponential fit” estimate of the incoherent background under the coherent peak (curve IV)
and the Trefil model estimate (curve IIT) is about 5 per cent of the coherent cross-section for ¢’ <0.04 (GeV/c)?

is a steep slope at small 7 characteristic of diffraction from an object of the size of the
nucleus as a whole and at large 7 a slope characteristic of free nucleon interactions (coming
from incoherent reactions on quasi-free nucleons in the nucleus). In between there may be
successive changes of slope or diffraction maxima and minima coming from two and
multistep processes in the nucleus (cf., the hint of such structure in the CERN-ETA-ICL-
Milan (“CEIM”) data for = — 37 in Fig. 2d).

Typical distributions of the mass of the outgoing state (s in Eq. (1)), are shown in
Figs 3 (n— 3rn), 9(n— 5n), 10(K— Knn), 17 (n— pn, p— pnn). Note that there is a first
peak in each case starting roughly at threshold for the least massive quasi-2-body state
out of which it can be made (e.g. no for 37, oA for 5z, K*(890) = or Ko for Knrn, An for pnn,
etc.). In most cases at high enough beam momenta there is a second peak (e.g. nf° for
3rn, K*(1400)n for Knn, etc.) corresponding to the next leastmassive quasi-2-body possible
constituents, etc. Each peak is typically at its maximum a pion mass or so above the
threshold and is typically 2 or 3m, broad. There are a few cases where narrower peaks
are observed superposed on the broad “normal” bump (e.g. Fig. 31 showing an ~ 120 MeV
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Fig. 2d. i-—Ag— a*rrn Ag at 15.1 GeV (Bemporad ez al. [46]). The statistics and resolution in this
CERN magnetic spark chamber experiment are sufficient to observe several diffraction-like minima.
Incoherent background is present at large ¢’ as in HLBC’s
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Fig. 2e. K-(HLBC)— K-#*n- at 12.7. 10, 5.5 GeV (Cnops et al. [62]) showing coherent and incoherent
productlon f. KHHLBC)— K+nta at 10 GeV (Haguenauer et al. [63]) showing clear coherent peak,

- K"rr*-mr showing indication of coherence and — K 1*1+1 showing no evidence for coherence. See
also Fig. 2m
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Fig. 2g. K~d— K-n*sd at 4 GeV (Hoogland et al. [59]); h. pd— prtn-d at 7 GeV (Antich et al. [64]);
i. pNe— patnNe at 28 GeV (Huson et al. [70])
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Fig. 3. Mass of w*n*n~ system coherently produced. a. z-d 3.7 GeV (Abolins et al. [32]), no cuts; b. ntd
4.2 GeV (Eisenstein and Gordon [34]). Outer histogram no cuts, shaded histogram ¢° in, and smaller
momentum transfer to this dipion
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(Vanderhaghen er al. [36]) no cuts; e. ditto @%in



50

f) Wisconsin — Toronto, Kiev 1970 Preprint Firebaugh et al.
37 mass spectra
i 120 1734 events
60 m'd 5.4 GeV
wrd —s-dntrtnT (7 GeV/c)
&£ 100 |~
&
3 “Wf
s
g 9)
g 390
300
n 1 1 Y o~V ~
04 08 1.2 16 20 2.4 L
- >~
M(3m) GeV 3 250
X
§ 2
£ 26 30
: | m <'
% 60t 7094 events
. - -
§ 100 mp—e-pmtaTy }(7 GeV/c)
g s0k —e-D1r T ar®
2 0 2087 events
40 L_ w7 p—eprtrTrT (25 GeV/c)
R W TR |
- 20 r
Fig. 3f. ntd 5.4 GeV (Deery et al. [37]); g w*d
7 GeV (Firebaugh et al. [40]) compared with 7~ S W N SR J
( 73G v (5 2]5) pa P 0 14 18 22 26 30
eV an GeV M (3n) [GeV/cH
i)
15 and 16 Gel/c 7~ on Freon
Daugeras et al.{1968)
25
h § T m°r° mass
60 - > 20+ 246 events
8 = 77 events o
N 70— 1*p*D 2 BE
2 4ok S
b 561 events 3 4
§ 8 Gev 5
- .
§ 20 r g 5 L
3 5
2 n, . o
ol oL 05 10 15 20 25 30 35 40 45
08 1.2 16 20 Gevrc?
Bemporad et al. Kiev 1970 CERN Mag. Spect. k)
Compilation of coherent w*2m™
2 100 t 1000 [~ production on
g e mass o Be,C,Al,Si,Ti,Ag, Ta,Pb
Y 135 events - at 151 GeV/c
£ " 757 events £ > i 22679 events
< g r
3 = ol 070
S so J L f
2 o 640
2 § = 1300 ‘
£ L
2 4
. — 1 1 —L 1
0 06 1 14 1.8 22
05 10 15 20 25 30 35 40 45 M (r*mm)LGeV]

Fig. 3h. atd 8 GeV (Cnops et al. [41]). ¢° in; i. 7~ Freon 15, 16 GeV (Daugeras et al. [47]). n~27° mass,
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Shaded events peak in A, region, unshaded in A, region, for both 727° and #*27~; k. Compilation of
coherent 7+2a~ production on Be, C, Al, Si, Ti, Ag, Ta, Pbat 15.1 GeV/c¢ (from Bemporad et al. [46]).
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Fig. 31 n~d 11.6 GeV UC Riverside [42]. Note relatively narrow 4, peak ('~ 120 MeV) in contrast to
most other experiments; m. td 13 GeV (Purdue [45]). Note A4, signal near 1.6 GeV
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wide 4, observed in n~d at 11.6 GeV by a UC Riverside group and Fig. 10f showing a 54 MeV
wide Q observed in K*d at 3.8 GeV by an Illinois group).

Typical distributions of the 2 out of 3 body masses are shown in Figs 4 (zn out of
3n), 11 (nr and Kr out of Kn=n), 17 (pr/pan). The dominance of ¢ in the A4; region, of
K*(890) in the Q region and A4(1238) in the “N*(1470)" region is evident. The presence

a
an_} )
.025 Gev Vanderhaghen et al.(1969)

ol 50 GeV
mid—edmintn”

100 +~ M%)
sl (2x1304) comb.
H 1

oLl N T . -
0 .24 66 1 12141618 2. GeV

Fig. 4. Representative 7t~ distributions from 7 — (3m)*. a. nts 5.0 (Vanderhaghen et al. [36]) showing
¢® and f° peaks over background (dotted curve) of reflections of other resonances. Solid curve shows fit
with simple Breit-Wigners

of £%in the 4; and K*(1400) in the L regions is also clear. There is some evidence for ¢°
also in the 45 and K*(890) also in the L regions. That one must be very careful in determining
L— K*@®890)n to L— K*(1400)x is shown in Figs 11 j-m (preliminary data on
K+*d— Ktntn—d at 12GeV from LRL [65]). The L and K*(1400) signals are both associated
with the d* band (mass n*d peaking near the sum of n*p in 4;; and a nucleon [25]), while
the K*(890) signal is not particularly. The K*(1400) signal is associated with the L region
while again the K*(890) is not particularly. When the K*n~ mass spectra for Knn mass
regions above and below the L are subtracted from the K-n— mass distribution for the L
region, a strong K*(1400) signal remains, clearly associated with the L while the K*(890)
signal is strongly reduced. The true L —» K*(890)n branching ratio is thus probably about
20% and may be much smaller.

Figs 5, 6, 12, 18 give evidence, from angular distributions and Dalitz plot densities,
that the spin and parity of the 3-body system corresponds to that obtained by combining
its least massive quasi-2-body constituents in relative S wave (e.g. n(0")+o(17) in §
wave — A;(11)). Labelling x = o, K*(890) etc. as the case may be, we have x - beAm in
3-body rest system typically roughly flat as expected for § wave; (beam) - (decay 7) in x rest
system ~ cos? for 7 or K beams, 143 cos? for nucleon beams as expected for alignment
in J. = 0 (£'/, for nucleon) states as discussed in the selection rules section above. The
corresponding azimuths are roughly flat as expected also. All experiments see asymmetries
in these distributions indicating, e.g. in the case of 4, — 3=, interference of the dominant
7o in § wave with a small amount of mp in P wave (corresponding to an admixture of
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Fig. 4b. 7td 8.0 (Cnops et al. [41]). For 3z mass between 0.85 and 1.45 GeV. Curves are from maximum

likelihood fit to Dalitz plot of symmetrized 1+S and 0-P; ¢. z—-Freon 15, 16 GeV (Allard et al., [26]) for
M3n < 1.3 GeV (742 events). The curve includes 80 per cent S wave 7o and 20 per cent 37 phase space;
d. Ditto for M3z > 1.5 GeV: 267 events. The curve includes 35 per cent g% 45 per cent f° and 20 per cent
phase space; e. Ditto (Daugeras ef al. {31]) for z~— 7220 (all M3n) mass 7= showing g-n° decay of-

A,~; f. Ditto, mass #%°. Peak near threshold is probably due to small background of events with miss
-paired y’s; g. 7~d 11.6 GeV, UC Riverside [42]. The shaded histogram is for the m~ with smaller
beam to m~ momentum transfer
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of various Jp; a. M3ta, for 0.625 < Msa*m,~ < 0.875 GeV and 1.0 < M3z < 1.2 GeV. Data of Allard

et al. [26) m~—C,F,Cl 15 and 16 GeV (from Veillet [12]); b. M2na-n°, for 0.6 < Ma—m," < 0.85 GeV and
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55

J% either 0~ or 2~ to the dominant 1*). Note that the admixture is not 1~ if produced
by vacuum exchange, not 2* or other positive parity because a 3= state of definite parity (+)
must yield a symmetric angular distribution even if o, ne, etc., ate interfering. Alternately,
viewed from the p rest system, the asymmetry is explained by a small admixture of S wave
7w (the ¢°) interfering with the dominant P wave (o). If the “bachelor” n is in S wave
with respect to the ¢ it must also be in § wave with respect to the ¢ in order to interfere.

75 and 16 GeV/c o~ on Freon
T channel

cos T4
08<Mmp<10GeV

LELELE SR

‘I.O(Mvre(fJGeV

IR EREER

15cMmp¢ 1.2 GeV

\S /
7

TTTT 1T 77 TYT T TT 17T
40 - 1.2<Mmp<1.4GeV

4

i
g
\

Vﬁrlllll Ill]'fll
-1 (/] +1 -1 /] +1

Fig. 6. Examples of 4,— on— 3n angles, cos 8, is the polar angle relative to the beam in the 3m rest

system, of the normal to the 3z decay plane. Cos 64 is the bachelor pion’s polar angle relative to the beam

in the 3naRS, cos « is the polar angle between the 7~ of the ¢ (in gRS) and the beam in the 37 RS (Adair

angle), cos 6, is corresponding Jackson angle (Beam in o RS); a. 15 and 16 GeV a~-freon— z -zt

(Allard et al. [26]). The curves show the dominance of 1+S wave. Note the slight asymmetry in both cos
and cos 8, distributions indicating e.g. admixture of m& in S wave

Thus the en system has J¥ = 0-. Similarly if the bachelor = is in D wave the en system
has J® = 2-. Similar remarks hold, of course, for the Q0 — K*(890)n, etc. Fig. 14 shows
evidence for coherent production of K¢ — KKK at 12.7 GeV. Other rare channels are
listed in Table IIL
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A dependence of coherent production cross - section
1M (mrr ) <12 Gev

arbitrary
Bemporad et al., Kiev 1970, CERN Mag. Spect. units
a= |03} 0 |03
Pb
cp=107F{ 17 | 19 | 20 Ta__15
14 | 20 | 23 | 2 2
>
118¢ | 22 | 25 | 27 30

Dependence of the best fit of oyt
on the parameters o and c,
of the optical model

Al The curves are from an optical

model density: g(r) = '——pi‘:
1—exp(r—a——-)

Cin = 25.4mb, 6,, is the curve parameter.

7
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Fig. 7. A dependence of coherent A4 production cross-section for 1 < Matm—n < 1.2 GeV, 7~ 15 GeV
(Bemporad et al. [46]). « is Re/Im of forward scattering amplitude for 4,, Co is Woods-Saxon radius
parameter. Data show that o4, is probably ~ 23+ 3 mb/nucleon at 15 GeV. More recent data (Amsterdam
preprint) show that o4, may be independent of M4, and that 05, may be even smaller than o,, i.e. € 5 0,

bcon 1 § 7m—=3m* bubble chamber data
PRz (mb) & m=—»3m* emulsion data
§ 7—=5m¥ bubble chamber data
10 § m—e5m¥emulsion data &
05F 3
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Fig. 8. Energy dependence of ooon/A-/* for (3m)= and (57)*. From Rybicki [54], showing rising coherent

cross-sections. See Miesowicz [66] for a more recent compilation of emulsion data
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Fig. 9a. 16 GeV a~-C,F;Cl— 27*37~. Mass 5 =z, for all events (solid) and for ¢’ < 0.04 (GeV/c)? (enriched
coherent sample). Dashed curve is statistical phase space. Note peak in S(1930) region. Mass 3z and 2
(not shown) hints of A4, and o structure. Huson er al. [48]; b. 13 GeV atd— 3a+2x-d, Purdue group [45],
showing again peaking near 4,+g threshold. Similar 57 mass distributions have been observed by the
CERN-ETH-ICL-Milano magnetic spectrometer experiment [46]
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W.Hoogland et al.
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Fig. 10. Examples of Knn mass distributions. a. K*d— K*atn-d 3 GeV (Buchner er al. [58]). Shaded

events are for 0.84 < MKn < 0.94; b. K~d— K-a*nd 3 GeV (Hoogland et al. [59]). Curve is OPE model

of Wolters and De Groot [72] normalized to the total number of events; ¢. K-d— K% n%, ditto;
d. K-d- K-ntnd, 5.5 (Wemner et al. [61]). d* in (Mdn~ < 2.28 GeV) are shown shaded
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University of Illinois
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Fig. 11. Examples of Km and mix mass distributions from K final states; a. 3.8 GeV/ec Ktd— Ktatnd,

Eisenstein et al. [60]. Mass K*n~. Solid curve is K* Breit-Wigner over phase space background. This fit«

implies that ~ 90 per cent of the events are associated with K*(890) production; b. 5.5 GeV/c K~d— K-n*md,

Werner et al. [61]. Mass K—=t; ¢. 10 GeV K+—HLBC— K*ntrm~ (Haguenauer et al. [63].) Mass K+m—;
d. Ditto. Mass stn

Jonhs Hopkins, Antich et al. (1970)
Kd—>Kn'nd 12.6 GeW/c
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Fig. 11e. 12.7 GeV K-d— K-ntmd (Antich et al. [64]). Mass K-zt showing signs of K*(1400) peak
as well as K*(890); f. Ditto. Mass n*tn~ with hint of ¢°; g. Ditto. Mass K—n~
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Fig. 11 b-m. 12.0 GeV K*d— K*n*n-d, LRL [65] preliminary data (corresponding to Figs 10r-v). h. Mass
Ktz showing K*(890) and K*(1400) signals; i. Mass 77— showing some g° signal superposed on K*(890)
reflection ; very little £°; j. Mass K+n~ for d* in showing K*(1400) signal is associated with d* (as L signal is
in Figs 10u, v); k. Ditto for d* and L in showing association of X*(1400) with L (in contrast to Q); 1. Scatter
plot of mass squares K+~ vs Ktmtm— with d* in showing that K*(890) signal is strongly associated with Q
but not particularly with L while K*(1400) is associated with L; m. Mass K+m—, d* in, difference of L region
and average of mass Knz regions above and below it, again showing K*(1400) signal is associated with L
region while X*(890) region is not strongly
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Fig. 12. Examples of angular distributions. a. Jackson angles cos 0, ¢ in K**(890) RS. K-d— K-n*tmd,
3.0 GeV. Hoogland et al. [59]; b. Ditto for K*® from K-d— K°nn’d; c. Ditto for K*- from K-d—
— K%~n°d; d. Jackson angles in K*°(890) RS, K-d— K-ntn-d 5.5 GeV. Werner e al. [61]. Shaded events
-have dn— mass < 2.28 GeV (d* in). K-7* mass between 0.8 and 1.0 GeV and K-n*n~ mass between
1.1 and 1.5 GeV; e. Ditto but Jackson angles of K nn decay plane normal in Kax RS (QRS); f. Ditto
but Jackson angles of K* in QRS
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Fig. 12g. Jackson angles Q region 1.1 to 1.5 GeV decay plane normal. K-d— K-n*n-d 12.6 GeV, Antich

et al. [64], the inset defines the angles. The curves superposed are predictions for various J? of the Q;

h. Ditto but for L region (1.6-1.7 GeV in MKx7); i. Ditto but Jackson polar angle (X here) of K in the

K* RS, and cos % = cos of polar angle of bachelor = in QRS. The inset defines the angles. The curves
superposed are predictions for various JP of the Q- K*xn decay
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Fig. 13a. Cross-section vs beam momentum for K-d— K-ntn-d (solid dots), K-d— K% ~n°d (X’s) showing
that they are approximately equal and rising with Pj as expected for vacuum exchange. The open circles
show the cross-section for K—d— K°%d falling with beam momentum approximately as expected for o
exchange. The black square shows preliminary LRL data [65] at 12 GeV for Ktp— K+ntzn— and the black
triangle for K*p— K%*d; b. Cross-section vs beam momentum for K-d— Q~d(X’s) (approximately
independent of beam momentum as expected for vacuum exchange) and for K-d— K*(890)~d falling
roughly linearly with momentum above 4.5 GeV/e. Both of these figures are taken from Antich er al. [64],
courtesy of A. Pevsner
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Fig. 14a. K*K~ mass distribution from K-d— K-K+K-d at 12.6 GeV/c (Antich et al. [64]). Note peak in ¢
(1020) region; b. K-K*K~ mass distribution. Shaded are ¢ events
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Fig. 15. Typical K® = mass or mass squared distributions for K*d-» K ,,n"d. At some beam momenta

Dalitz plots and momentum transfer (target to recoil) distributions are shown also. 2. K+d 2.3 GeV, Butter-

worth ¢/ al. [57]:b. K-d 3.0 GeV, Hoogland et al. {59); ¢. K*d 3.0 GeV, Buchner er al. [58); d. K-d 4.5 GeV,

Eisner ef al. [67). The curve on the MK plot is a simplc Breit-Wigner (M, = 88545 MeV, I' =

55718 MeV) over background. The curve on the A2 plot is exp (—64%) times the square of the deuteron
form factor
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Fig. 15e. K-d 12.6 GeV, Antich et al.
No d* (or dK®) peak is apparent here.

decay modes. The eve

M(K°mt) GeVv

[64]. The coherent events are shaded; f. K*d, 12.0 GeV, LRL [65].
The K*(890) signal corresponds to ~ 20ub after correcting for other
nts in the K*(1400) region correspond to ~ 5S4+5ub
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Fig. 15g-j. K~Ne at 12.7 GeV, Daugeras [31]. K%~ and K-7n° events both are included in the mass plot

(Fig. 15 g), ¢’ (15h) and Jackson angular distribution (Fig. 15§). Fig. 15i illustrates the definition of this

angle. The dashed curve in the ¢’ distribution shows the free nucleon distribution which describes the large

t’ data. The solid curve is a fit to the sum of the dashed curve and a theoretical coherent distribution smea-

red by experimental resolution. (The zero at " = 0 and the peak at #" = 0.01 GeV? are obscured by

resolution in ¢’ of typically 0.005-0.01 GeV?2, Fig. 15j shows the sin? 8 distribution for vector meson produc-
tion via vector exchange
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Fig. 16. Typical Jackson angular distributions in K*(890) RS for K=d— K%v*d; a. K~d 3.0 GeV/c, Buchner

et al. [58]. The curves are calculated for gy = 0.26, p;—; = 0.27, Re p 10 = 0.04. The K* is defined as

0.82 to0 0.94 GeV in MKn; b. K-d 3.0 GeV, Hoogland et al. [59]; ¢. K-d 4.5 GeV, Eisner et al. [67]. The

curves are calculated for gy, = 0.12, 0;-; = 0.38, Re ¢10 = 0.04; d. K-d 12.6 GeV, Antich e al. [64].

The coherent events are shaded. The solid curves represent the predicted distributions for X*(890) produc-
tion via w exchange with no absorption and no deuteron spin flip
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8. P exchange processes

The coherent reaction K— Kn, which cannot proceed via 0™ exchange but can go
via higher natural parity exchange, e.g. 1(@°), (and which must vanish in the forward
direction if proceeding via natural parity exchange) has been observed at several beam
momenta in DBC experiments and now also from neon at 12.7 GeV/c in both K°z~ and
K-7° modes (see Table 1V). Fig. 13 shows that, in contrast to the slowly rising K— Knn

70 GeV, Antich et al. (1970) a)
204+ pd—eA""n’d shown shaded
>
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Fig. 17a. Mass n~d distribution for pd— pmntd at 7.0 GeV. Antich et al. [64]. A—n*d events are shaded;
b. Ditto, #*~ mass; ¢. Ditto, p7r~n* mass

coherent production cross-section (and roughly constant at 140pb/dQ region coherent
production cross-section), the K— Kn cross-section falls rapidly to ~20pb at 13 GeV
(and the K*(890) perhaps linearly with beam momentum as expected for @ exchange).
That the K*(890) dominates Kn mass spectra is shown in Fig. 15 and Fig. 16 shows that
the K* Gottfried-Jackson angular distributions are compatible with those expected for
0~ — 1= via vector exchange (with no deuteron spin flip), i.e. sin?8 and 1-2p,_, cos 2¢
with 9, & |0,—4| = 0.5.
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Fig. 17i-1. Mass pa~ for n4 — paA, Michigan-Princeton [71] preliminary data from carbon (i, §) and

lead (k, I). Figs i, k are for events in the coherent peak; Figs j, 1 for incoherent events. No signs of N*

observed in z-p scattering are apparent. Again a diffractive peak starting near threshold (here at mp+my)
and a few hundred MeV wide, is observed



The possible contribution of Coulomb production to coherent K* production should
rise with beam momentum and Z. It should be less than 2 ub (i.e. a few % of the coherent
production cross-section) for 12.7 GeV/c Kn~ neon, but it may be observable from heavy
elements at CERN and BNL energies.

Recall that K— K= does not require G exchange. However, n¥ — n#n° does, but has
not so far been observed due to the enormous background of elastic np and =nd scatters
when the n° decay y’s are not observed.

Fig. 19, however, shows evidence [73] for n~— n*n*rn—n® coherent production at
11.7 GeV, with a surprisingly large cross-section (180 pb/d!). If @® exchange is responsible,

Antich et al. (1970) |
pd-»A""m'd 70 GeV
20+~ 28 ev.
20 & 1+3 cos? &
£
L)
3
E 10
&

Events/20 degrees

4 120 240 360
? { degrees)

Fig. 18. Jackson angular distribution for A_'”RS, pd— A—x+d 7.0 GeV. Antich et al. [64]. The curves
show the 143 cos? 6, flat ¢ distributions expected for a .J-— aligned in an m = £/, state

and if the produced states are not too heavy, the cross-section should rise nearly linearly
as p, is decreased, i.e. this channel should remain comparable to nd— 3nd at lower beam
momenta. Fig. 19d (M,,) shows what may be a series of superposed diffractive peaks
corresponding to quasi-2-body channels nw, gg, nd;, etc. More data is available in ex-
isting DBC film on this and other w exchange channels (e.g. K— Kn) and should be
published!

Note that = — 4z does not have to vanish in the forward direction if the 47 system
has unnatural parity (and is produced by natural panty exchange), in contrast to 2w
(and Km) which can have natural parity only.
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Fig. 19. ¢’ distributions for reaction w*d — drata—a*a® at 11.7 GeV/c. a. All events (1415); b. 627 ambiguous
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9. Conclusions

Remarkable similarities are becomin gapparent among the dominant coherent proces-
ses m— 3n, K- Knn, n— nnn:

1. The cross-section for a particular process (e.g. nt— Af, K=— Q) is roughly
independent of beam momentum (Fig. 13), while coherent cross-sections for a topology
(e.g. == 3m, K— Knm) rise with beam momentum (Figs 8, 13). Typical particular coherent
cross-sections are of order 1 per cent of the beam-nucleus total cross-section.

2. Each coherently produced topology’s mass distribution seems to show the beginning
of what is probably a series of broad (a few hundred MeV wide) peaks, the first peak
somewhat above the threshold mass for the least massive quasi-two-body state out of
which the topology can be made (e.g. the A4,(1070) peak near o+ r threshold, Q(1300)
near K*(890)+n, N*(1470) near 4(1238)+n), the next peak just above the next threshold
(e.g. A5(1640) near f°+m, L(1780) near K*(1400)+ ). Sometimes the bumps probably
overlap (e.g. K*(890)r, Ko in Q(1300)).

3. The peaks apparently are not shaped exactly like a “normal” (Jackson 1964)
Breit-Wigner.

4. The spin and parity (J¥) of each peak seems to correspond to that obtained by
combining in relative S wave (/ = 0) its least massive possible quasi-two-body constituents
(e.g. 0(17)+1(0) = A,(19), Kioo (17 +7(07) ~ Q(I%), £224) +1(0) » A3(2), Kiigoo(24) +
+7(07) = L(27)). The “‘decay back” (e.g. 4y — o+ 7) probably is a mixture of § and D
waves, however, and the heavier objects can be expected to have many ‘‘decay” modes.

5. Each prominent peak seems to be produced aligned only in those states permitted
by ‘“‘elementary vacuum” (J? = 0%) exchange (e.g. n, K beams (JT = 0") produce the
Ay, O, probably also 4,, L, aligned with m = J; = 0 and N— N*(1470) is produced
with m = +1/2). The distribution of the azimuthal angle around the exchanged particle
(Treiman-Yang angle) is roughly flat.

6. The A dependence of the coherent production cross-section implies that the out-
going state (at least the 4; and Q) is absorbed in nuclear matter with cross-section roughly
equal to that of the beam particle, rather than roughly equal to the sum of its quasi-two-
-body constituents (e.g. 64, = 23+3 mb = g, < 9,+09, ¥ 45 mb).

7. In addition to the dominant processes, several rarer but apparently similar processes
have been observed, e.g. K— K¢, n— 5n (mass 5z peaks near 4, + ¢ threshold and pro-
bably also has absorption cross-section = 6, <€ 50¢,). Coherent production of K3x states
is observed with cross-sections roughly an order of magnitude smaller than for K2x.

Characteristics 1, 2, 4, 5 are expected for states coherently produced via vacuum
exchange with the nucleus.

Besides these dominant vacuwm exchange processes there is some evidence for
another class of processes showing the characteristics expected for w° exchange notably
K— Kn. ‘

1. The cross-section for a particular process (e.g. K— K*(890)) falls with increasing
beam momentum roughly as 1/p, (Fig. 13) and the topological cross-section probably
more stowly.
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2. The K*(890) is produced aligned in an m = +1 state and its Treiman-Yang
angular distribution is compatible with that expected for vector exchange. At lower energies
the situation may be more complicated.

3. There is evidence from one experiment for the existence of coherent = — 4n produc-
tion from deuterium.

The clearest conclusion is that more data is needed! Note, for example, that there
is no published n~d data above 5.1 GeV, nor K*d above 3.8, no pd at all, no He at all,
very little information on channels involving n%s. Any such new data should teach us
something!

In addition to my colleagues at Berkeley and at the several labs collaborating with
us on HLBC experiments (and Theorists at these places) who have corrected my misconcep-
tions on many points I want to thank the participants in this year’s Cracow summer
school, especially A.S. Goldhaber, A. Biatas and T.H. Bauer for several clarifying comments
during these lectures. I am grateful to the school’s organizers and to the UC Berkeley
research committee for support in Poland and travel to and from, respectively, which
together made it possible for me to give the lectures.
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