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The eikonal approximation for the contributions to inelastic scattering from arbitrarily
crossed ladder graphs is considered. The particle represented by one of the ‘“‘side-pieces”
of the ladders is allowed to change its state and mass at each rung; the other side-piece
particle is restricted to have at most one change of state, and that only if its elastic interactions
are the same in the two states. When the denominators of the latter side-piece can be linearized
the amplitudes reduce to forms essentially identical to those foud in non-relativistic coupled-
-channel potential theory. This result is independent of the ratio of the energy to the side-
-piece mass and connects smoothly the non-relativistic and extreme relativistic regimes. Its
implications for absorptive models are discussed briefly.

The coupled channel eikonal approximation has been used extensively in high-energy
particle and nuclear physics in recent years. It has furnished a derivation of the absorptive
model [1-4] for two-body and quasi-two-body exchange reactions, and has also been
used to determine the effect of inelastic intermediate states in the high-energy scattering
of elementary particles from nuclei [5].

Until recently [6-8] the coupled channel eikonal approximation has been based
exclusively on potential theory. This starts from a Hamiltonian

H=K+h+V

where K = p?/2m is the kinetic energy, / the internal Hamiltonian, and ¥ the potential
which has inelastic as well as elastic matrix elements. A convenient basis for scattering
problems is the complete set of states Ip, 4>, where

2
[mﬂmm=B“Mﬂm0-
m

The T-matrix is given, formally at least, by the Born series

T=YT",
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where
T™ = V(GoV)" ™,
with
G, = (E+ig —K—h)L.

For purposes of comparison with a relativistic formula to be obtained below, the explicit

form
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(P2, ﬂleIPx, > = (g, iy P2~ Py)s
is needed. The different terms in the Born series can be represented by simple diagrams:
A particular # = 3 term is shown in Fig. 1.
To put some sort of relativistic foundation under this theory (which is, after all,
usually used at relativistic energies), some recent work [9-16] on the relativistic eikonal

P2z . Piby
Py Mg < - Pi Hi

Fig. 1. The n = 3 diagram in coupled-channel potential theory

approximation can be used as a guide. Consider the relativistic analogue of Fig. 1 shown
in Fig. 2. The top line (the “p-line”) is allowed to change its state and mass at each vertex,
while the bottom line (the “g-line™) is restricted to be almost inert, with at most one change

pekicky M2 Pisky
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Qs q;
g; -k;k, q; -k

Fig. 2. The n = 3 ladder diagram in field theory. The amplitude A®) also contains the 5 other diagrams
obtained by permuting the points of attachment of the rungs to the g-line
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of state, and that only if the two states have the same mass and elastic interactions. The
restrictions on the g-line are imposed so that the simplifying cancellations [16] which
occur in the elastic case can also occur here.

The general term in the relativistic Born series which sums all arbitrarily crossed ladder
diagrams is

d*k, d*k
AP, ) = — Z f o Q) pim Ky — =K X

@m* " (2n)
{u}
X[ tners —ka) oo Sl iy =KD [(Dit ki + oo+ ko) =M, y)?+ie] ™" L
[(p,-+k1)2-—M2(u1)+i8]_1 { ; [(gi—kpi— ... —kpgne1y)?—

—M?+iel ' . [(qi—kpy)?— M2 +iel ).

Here f(u,, 1y;—k?) is the propagator for the exchange lines represented by the rungs of
the ladders, and the sum over P indicates the sum over all permutations of the points of
attachment of the rungs to the g-line.

This expression for 4™ is now simplified by assuming that the g-line denominators
can be linearized, 7. e. that

(qi=k)—M?* = =2q - k+(q;—q) - k+k*=
= —29 -k,

where ¢ = 4(q,+¢;). Clearly this has a chance of being a valid approximation only if ¢
is very large compared to the momentum transfer and the mass of the exchanged particle,
and this can be due to either g or M being large, or both. (For the moment the momenta
in the center-of-mass system are considered, for it is here where the exchange momenta
are likely to be small.) It should be pointed out that in elastic scattering this linearization
is not valid for all theories, and where it is valid it does not hold for the individual diagrams
but only the sum over all the crossings [16].

Consider now the integrals over the energy components of the k; when the lineariza-
tion of the g-line denominators is valid. These have the form

T o 2m0(pro—Pio— K1 o= --» —Kno) X
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Changing the variables of integration to

x;=2qk; = 2qpk;o—2q * k;
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this reduces to
1
I, = (ZEO—)"—_—I del...dx,,F[k1 o(*1), - k,,o(x,,)].x

X (xy+ ... +xn){;[—xl’1_ —xp(,,_“+i8]—1...

o [=xp +ie] 7'}
The evaluation of this integral is trivial because of the identity [11]
5(x1 + e +X,,) {; ["-XP] T e '—xP(nﬁl)"'is]_l...
o= xpy+iel ) = (=27 6(xy) ... 8(x,).
In the case n = 2 this is equivalent of the well-known formula

1

—Xx+ie x+ie

= —27id(x).

A proof of the general case begins with the integral representations
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leading directly to the result claimed above. The physics involved in the identity is prob-
ably most evident in this last equation. Because we are summing over all permutations each
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exchanged particle can be emitted from the g-line with equal probability at any time:
this probability is unaffected by other emissions occurring along the same line.
With this identity

Flk, o(0), ..., k,o(0)]

ly = ———
® 7 Qigo)!

where
[x = 29oko—2q - k = 0] = ko(0) = —v4k..
Here — g defines the z direction, and
vy = |4|/40

is the center-of-mass velocity parameter. It is important to note that v, has not been assumed
nearly equal to one: The linearization of the g-line denominators may be valid for small
v, if the mass M is large enough compared to the exchanged mass.

When k, is replaced by —vk,

—k = (1 —0)ki+k] = k"
and
(Pt k) =M*(@) = —2p; - k' =k + M*(u) — M* (),
where
ky =k, pPL=p,

—_— Z+U
k; = \/l—vflkz, p. = P-T %P0

\’/1—03 .

Note that p; is just the incident momentum in the reference frame where ¢’ = 0. In the
original center-of-mass frame the “potentials” f[(1 - v:) k2 +k_2,_] were Lorentz contracted;
by changing the variables of integration from k to &’ the potentials again become spheric-
ally symmetric in the average rest frame of the g-line particle.

Inserting these results in the original expression for A"
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where 4 = p}—p; for energies much greater than M(u;)— M(y;). Changing variables of
integration to

pi = pi+ky

p2 = pi+ky+k;

this can be written as

" E a’ Pn-1 d3P1
—— A( )(;uf, ;) J‘ (27{)3 ‘e (23)3 X
{n}

1 "1
X [mf(uf, Bu-15 (p’f—pn—l)z)] [mf(ul, 5 (py —p’,-)z)] X

x [p*+M*(u)+ie—py_y — M*(u,- )] 7'

PP MA ) +ie—pr— M (uy)] !

This has precisely the form of the corresponding terms in the potential theory Born series,
with

’ (m ./ i (n)
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and with the external momenta evaluated in the g-line rest frame [17].

There is thus some reason for hoping that coupled channel potential theory can
provide an adequate description of certain high energy processes. It must be remembered,
however, that fairly strong restrictions have been placed on the types of graphs considered:
only crossed ladders with an “inert” g-line were included.

The eikonal approximation in coupled channel potential theory [5, 18, 19] is discussed
most efficiently in terms of the scattering wave functions in coordinate space. The coupled
Schroedinger equations have the form

v2
[— Py +e(;17_):| p(py, ¥)+ Z Vg, pys Dwlpy, r) =

H1

2
= [21)‘;2 z)} %U(#z, i‘),
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with the boundary condition

w(u, ¥) = Oy, p)e”" 4+ outgoing spherical waves.

r-»00

If the wave functions are written in the form

wlp, 1) = \/ p—f;) eLrert PWTROAL(y, ;s b z, —c0)
where

m

P ~ pit+ o Le(u) —e(w)]
is the asymptotic momentum in the p-th channel, then dropping terms quadratic in p—p;
in the usual way gives the simple matrix differential equation

or
oz
Here I' is the matrix defining the wave function, while U is a modified potential matrix

m
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The matrix I’ satisfies the boundary condition
r - 1

and from its value at z = 400 the T-matrix can easily be calculated:
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The problem, then, is to solve the differential equation for I'. The formal solution,
of course, is

I'=%exp[—i j: dfub, 0],

—0

where & is the z-ordering operator, but if, as will usually be the case,

[U(b, 2), U(b, )] # O

this cannot be converted to any simple analytic form which is useful for calculation.
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In some cases, however, it is sufficient to expand I' in powers of the off-diagonal
elements of U. This is because in high energy physics the cross-sections for particular
inelastic channels are usually small compared to elastic scattering cross-sections. The
expansion is essentially identical to that used in time-dependent perturbation theory:

I'(eo, —o0) = g0, —00)—i T dz,T'o(0, z)U(z ) o(z,, —00)+
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functions as a propagator for the uncoupled channels.
Dropping terms of second and higher order in U,, the elastic scattering is given by

P\ Tipiy = i&jdzbe"'“’f‘m”x
m

% [eix(m,b)_ 1]’

while inelastic scattering is given be the DWBA formula with eikonal-approximation
initial and final state wave functions:
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The elastic scattering amplitude involves the full eikonal function

m
xy, b)) = — — f dzV(p, us; r),
p(w) .

and these functions can be determined from the scattering amplitude by inverting the
Fourier transform. The inelastic amplitude, on the other hand, involves the partial eikonal
functions [20]
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pu)0
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For central potentials it is possible to obtain these partial eikonal functions directly in terms
of the complete eikonal functions, without passing through the intermediate step of
obtaining the potential.

The equation for y in terms of Vis an Abel integral equation [21] which can be inverted
to give Vas an integral transform of y. If this expression for Vis substituted in the integrals
defining the partial eikonals a few simple manipulations lead to
1w, ) = ;_x(u, b)+ zﬁ—k—d{)— X

\/bzz _ ’_2

r

y Lx(u, b)Y — x(u, b)]
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X7 D+, 1) = 2(B)+
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T
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where

x(b) = 5 [x(uy, bY+x(u;, b)]
and

xa(b) = x(uy, b) —x(thi, b),

is required for the inelastic scattering amplitude.

There has been considerable discussion in the past over exactly how to modify the
Born term in the absorptive model [1-4] when the initial and final states have different
elastic interactions. (This is, however, often an academic question, since the final state
interactions are in many cases not directly measurable). A common prescription has been
to multiply the Born amplitude by the geometric mean of the initial and final state elastic
S-matrices. This corresponds to taking only the y, term above, and this is accurate only
if y, is small, or if the exchange potential ¥ (u,, p;; r) has a range which is small compared
to those of the elastic interactions.

To summarize the results présented here, it has first of all been shown that in the
high energy or large mass limit the sum of all arbitrarily crossed inelastic ladder diagrams
is equivalent to coupled channel potential theory provided the linearization of the g-line
denominators is a good approximation. This result suggests that in some circumstances
coupled channel potential theory may provide a useful description of inelastic quasi-two-
body processes when appropriate kinematic variables are used. Finally, the coupled channel
potential theory eikonal approximation derivation of the absorptive model shows that
the usual geometric mean prescription will be inadequate unless the initial and final state
interactions are very similar, or unless the exchange interaction is of very short range.
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