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A unified description of diffractive production processes on nucleons and nuclei based
on a model proposed some time ago by Bialas, Kotanski and the author is discussed.

1. Introduction

In collisions of very high energy particles there exist elastic and inelastic processes
in specific channels which, judging from existing experimental data, do not vanish in the
limit of very high energies. In these lectures I shall try to outline a possible approach to
analyse these processes.

Let us start by giving a few examples of such processes. There are many known
clastic processes of this kind. In Quantum Electrodynamics [4]: elastic electron
(positron) scattering from a Coulomb field or from some other charged particle, elastic
scattering of photons from a Coulomb field (Delbriick scattering) or from an electron
(Compton scattering) — just to name the better known processes. Among hadronic
elastic process one can list: the hadron-hadron elastic scattering cross-sections (p—p,
n—p etc.) which all seem to have energy independent (or very weakely dependent) cross-
-sections dodA? = f(4?), where A? is the momentum transfer squared (for small angle
scattering 42 =~ —¢). The same can be said about hadron-nucleus elastic (good energy
resolution: the target nucleus remains in its ground sfate, poor energy resolution: the
experiment sums over all nuclear excitations) cross-sections. All these elastic process had
been discussed e. g. at the X Cracow School of Theoretical Physics (see Acta Physica
Polonica B2, Fusciculus 1 (1971)).

This time we shall discuss the diffractive inelastic production processes
(one may say that this is a continuation of the discussion which was presented at XI
Cracow School of Theoretical Physics, see Acta Physica Polonica B3, Fasciculus 1 (1972)).
Starting again with QED we have ¢. g. the well known processes of bremsstiahlung and
pair production, less known positronium photoproduction in strong Coulomb field,
production of two electron-positron pairs in photon-photon collisions and many others.

* Address: Instytut Fizyki Jadrowej, Krakéw 23, Radzikowskiego 152, Poland.
(663)
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We shall give below a brief discussion of the first three processes treated the way which can
be extended to hadronic processes. There are many hadronic diffractive production process
known. The present status of the experiment the reader can find in the lectures by drs Beusch
and Lubatti given at this school. In the present lectures we shall discuss briefly diffractive
dissociation of protons into pions and neutrons off nucleons and nuclei.

Our discussion will be based on the assumption that diffractive production processes
in QED and in hadronic interactions have similar mechanism: The process of dissocia-
tion of the incident particle into its components is weak compared to the process of their
scattering from the target. For instance, in the case of pair production by high energy
photons in a strong Coulomb field, the process of photon dissociation into the electron-
-positron pair is weaker than elastic scattering of electrons and positrons from the Coulomb
field (the ratio of the effective coupling constants is of order o = 1/137). Similar state-
ments can be made about hadronic diffractive dissociation. For example the cross-section
for proton dissociation into pion and neutron is of order 1 mb while the elastic scattering
cross-sections of hadrons from hadronic targets are more than an order of magnitude
larger. It has to be stressed that such statements of weakness of diffractive dissociation
are being made for specific channels, not for the sum of all possible dis-
sociations. Another characteristic feature of the process discussed here is a “passive”
role of the target: nothing happens to it. It looks indeed as if the incident particles were
dissociating into their components. All these process are very strongly peaked in the
forward direction.

In these lectures a model is discussed which may be applied to all these processes
with “elementary” targets (nucleons) and “‘composite” targets (nuclei). It is very likely
that nuclear targets will be able to provide us with details on elementary processes which
are difficult or even impossible to get from the processes on nucleon targets. In the
lectures by dr Gottfried given at this school some recent general results relevant to this
point are discussed. Here, we shall limit ourselves to a specific model and attempt to
propose a unified description of diffractive dissociation on simple (nucleon) and composite
(nuclear) targets.

2. The model

The model we shall employ to describe all diffractive processes (both on simple and
composite targets) rests on two assumptions:

(i) The colliding objects can be decomposed into subunits whose interactions with the
target are assumed to be known. Such a decomposition is not always obvious and sometimes
may become ambiguous but, in many cases it is self evident: e. g. a nucleus is, to a very
good approximation, composed of nucleons, an atom of electrons and a nucleus efc.
The internal structure of colliding objects is described by the wave functions which
give distributions of the subunits. Again, in some cases these are well known wave functions
in other cases they are some speculative objects. The examples discussed below illustrate
the situation.

(ii) The process of diffractive dissociation at high energy is caused by elastic scatter-
ing of subunits from the target. These subunits scatter independently from each
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other. Hence the total S-matrix is a product of individual S-matrices. In momentum space
S= H SI(EH. “EJ_L) = H [(2“)25(2)(Eu “‘EJL)—?J‘(EJL _Ej_}_)]‘ 2.1)

In order to compute the transition matrix elements we have to known j(k ;LD It
which are the elastic scattering amplitudes. The transition matrix element is

M = {flA]i) = <f1(l;[ S;=Dliy (22)

where the initial and final states are given by the wave functions mentioned in (i).

A few additional comments referring to the second assumption are in order here.
Eq. (2.1) is written in momentum representation. Sometimes it is more convenient to
use position space representation and we shall do it often below. The next comment is
that our S-matrix (2.1) depends only on transverse momentum transfers. This approxi-
mation is justified by the observation that in the limit of very high energies and small
momentum transfers the longitudinal momentum transfers go to zero like w~! (where @
is the longitudinal momentum of the incident particle). There are however cases where
one has to consider longitudinal momentum transfers. This is so when very small trans-
verse momentum transfers, of the order of w~*, contribute significantly to the amplitudes,
which happens e. g. in QED productions processes in forward directions. Then one has
to use some different techniques. Some examples are discussed below.

The final comment is about structure of subunits. When they are themselves composite
they may undergo various excitation processes in consecutive collisions — if the target is
composed of many subunits. Phenomena of this kind occur presumably in scattering
processes from nuclei. In such processes the same final state may be reached through
many different “histories” of a multiple collision processes. In order to take into account
such phenomena one should somewhat modify the above outlined scheme. We shall
come back to this process while discussing diffractive production on nuclear targets and
describe two techniques of dealing with such phenomena [1], [2].

First, however, we shall discuss *“‘simple” targets whose internal structure can be
neglected. There, such effects as described above play less important role.

3. Elementary diffractive production processes in Quantum Electrodynamics and hadronic
physics

It is instructive to discuss first such elementary diffractive processes as brems-
strahlung, pair production and photoproduction of positronium?!, all in
strong external Coulomb field. All these processes do not vanish in the high energy limit.
They also exhibit the “weakness” characteristic of diffractive processes in a given channel:

1 This process has a very small cross-section. Its order of magnitude:
< 1073%cm?
for para-, and somewhat smaller for orthopositronium production for Z = 100 {7] and, probably, it is

going to be swamped by e.g. pair production process. It is however worth analyzing as a model process

for the purpose of understanding several subtle aspects of diffractive production of bound composite
objects.
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the elastic scattering cross-section of “‘subunits™ (which are in these cases electrons and
positrons) from the external strong Coulomb field are much larger (~ (¢Z)?) than the
production cross-sections (~ a{xZ)?). So, they may serve as a model for strong diffractive
production.

There exist in the literature some very complete calculations of such processes (except
for positronium photoproduction) [3] whose transition matria elements are taken in the
form .

M = [ dryyj Ay, 3.1

where the radiation field is taken to first order but the wave functions of the two electrons
(bremsstrahlung) or a positron and an electron (pair production) 3, v, are the exact
solutions of Dirac equation in a given (strong) Coulomb field.

This is certainly a correct way of finding cross-sections for bremsstrahlung and pair
production in a strong Coulomb field, but the possibilities to apply it to other diffractive
production processes (like e. g. positronium photoproduction') or to extend it to hadronic
processes are very limited.

Recently, however, a different approach to high energy QED processes was proposed
(41, [5] and many others) which gives prescriptions for calculating transition matrix
elements of various diffractive production processes equivalent to the ones formulated in
Section 2. So, one can cast the matrix elements for the above three processes in a form of
an operator .# which describes elastic scattering of subunits sandwiched in between the
initial and final state wave functions of the system. This approach is already very flexible
and can be extended to hadronic processes: The wave functions can be, with some modi-
fications, constructed as in QED, the operator .# can also be, to a good approximation,
expressed in terms of some realistic clastic scattering amplitudes.

Let us start by discussing some details of the pair production cross-section. Let
us work in the rest system of the infinitely heavy target where the momenta of e*e~ pair
are very large.

First we specify the subunits of a physical photon by writing out the wave functions
of the initial and final states:

the photon state iyd = /Z [7>+Zeetey+...],

the ete~ state Cete | = /& [(ete | L<yle’+...]. 3.2
The coefficients ¢, ¢’ are small and from the orthogonality condition {ete~|y) =
=Z(+¢) = 0, we get ¢ = —e¢. % is the renormalization constant which is, to first order

in g equal 1. Eq. (3.2) presents the physical states as superpositions of the bare states.
We can compute ¢ as the first order perturbation and we get in the limit of very large
longitudinal momentum of the incident photon (w — ®):

e(p1p2) ~ eu(ps) 7 - € () [IP{—E(p,) —E(py) I
_ oxnam,

eUye - &(q, n,—n)U;, (3.3)

g e

! See footnote on the previous page.



667

where
d(q,n,—4y) = [O'z(*?z“'h)_q”""@xgz)+me5;_] (g*+mH7",
g= (’1152_]__'72;71_1_) (ny+n2)" "

Eq. (3.3) gives the amplitude of a e*e~ bare pair in the physical photon. Fig. 1 explains
the notation. We have used the conventions of Ref. [6]. U, , are just the two component
spinors which are related to the four spinors as follows

———

()_\/E+m - -
“p) = 2m o'p
E+m

U

We shall accept that all particles move in the positive direction of z-axis, hence
0 < 14,1, < 1. To meet the requirements of the assumption (ii) of Section 2 and construct .#
we have to specify the interactions of the subunits (baie photons, electrons and positrons)

— —
Py =€z wepy

—
=e

—
,w»Pl

— — .

P2=€zRowW+pPy
From momentum conservation: py+p,=1,P, =pyy +pa;
ez -unit vector in the direction of z-axis

Fig. 1

of (3.2) with the strong Coulomb field of a heavy nucleus (Z large). A reasonable assumption
is to neglect the interaction of the bare photon with Coulomb field, and to take for positron
(clectron) amplitudes the amplitudes one gets by solving Dirac equation with Coulomb
potential:

G4k, ~p.) = [ d?be L7 51 _ ptix®)

where we neglected the spin flip part of the amplitude because we shall consider only
small momentum transfers, hence, in the limit @ — oo, this part goes to zero. y, is the phase
shift of a screened Coulomb field (to avoid lengthy discussions of handling infinities
caused by the infinite range of an unscreened Coulomb field). From (2.2) we get

M =5y, =Py ) +F-(hay =Py )= Tslky ), =Py VT2 —D2))- (.4

By using such amplitudes we accept two different coupling constants in the process:
“small” e and “large” eZ. The pair production process is considered here to lowest order
in e and to all orders in eZ. Note that .# does not create any new subunits: it just scatters
them elastically. The first two terms in (3.4) give scatteiing of just one bare lepton, the
third term represents scattering of both bare leptons. In the two dimensional space
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spanned by a bare photon and a bare pair states, .# is represented by a matrix

( GLaEy  Gidletey )z(ﬂ 0 )
Cetem | M) Cete | Miete™>)  \0 (ete | leTe

The transition matrix element is therefore
(fl )iy = Cete™| Y, MeleTe™),

where the sum is over all intermediate momenta (note that the longitudinal components
do not change during the scattering process — in the present approximation). The three

~ < K

a)

2/ 2:
b)
Fig. 2

contributions coming from the three terms of (3.4) can be represented graphically as
shown in Fig. 2a), where each dot corresponds to one factor .
One can use the same technique to compute the bremsstrahlung matrix elements:

iy =le™) = JZ [167) +e(Dles ) +...]

(1= <ey = I [Cezrl—Cérlel) +..]
with
e = eu(p,)y - e u(py) [E(p)— K| —E(px)] "

Assuming again that the photon interaction is negligible we have .# = y—(1)+7—{(2) but
in the two dimensional space spanned by |e-)> and |e"y) this operator looks schematically

as follows
((é;wléD 0 ) ( 1 ) _
(—&(1), 1) 0 {ezyllesyd) \e(1)

= —a(l') (eTIMIeTD +{ezylMles yDe(l) = (fiMIi.

The two corresponding processes are depicted in Fig. 2b).

The results of such calculations have been, to some extent, compared with the *‘clas-
sical” results for bremsstrahlung, pair production and Delbriick scattering all in the high
energy limit. The general conclusion (to the best of this author understanding) is that
agreement exists for all “physically relevant™ results. In other words the differences exist
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only (we hope) in the results which depend crucially on the infinite range of Coulomb
interaction {e.g. in forward Delbriick scattering). When one neglects screening one cannot
neglect the longitudinal momentum transfers at the scattering verticles (as it is done in
(2.2)), because contributions from very small transverse momentum transfers may
cause divergences which do not occur if the longitudinal transfers are kept (even though
they go to zero like O(w~')). These problems disappear when there is a natural cut-off
radius like a screening radius.

Before going over to extensions of the outlined technique to hadronic processes let
us discuss the structure of the “wave functions” of the fluctuations like e.g. ete~ fluctuation
given by (3.3) (compare Ref. [5]). The variable g can be interpreted as arelative momen-
tum of the pair (11,, 17, play the roles of masses). If one introduces the transverse position
vectors §;, and 5, for the two particles, and interprets g as being conjugate to the rela-
-tive distance 5 = 5, —5,, we get through the Fourier transform

1
(@2n)*

&G, n,—1,) = fdzqe"‘”q?@, fn2—1y)

the following expression for the transition matrix element in the position representation
SIS ~ jdszzs iCP k1 —ka) TRy~ imdks Ty +inika s o
X [74(R+128) +7-(R—1,8) =y . (R+155)y -(R~1;5)] X
x Uje - as(;s n:—n)Uy, (3.5)

- -
< MNS+n8,
where R =

ny+12
dimensional Fourier transforms of $.’s. The initial state wave fuction is 5(3, na—1ny),
the final state wave functions is ei2i's e—ink2's, The expression in the bracket is usually
called profile operator. This formula is an analog of the well known Glauber formula
for a diffraction of a nonrelativistic system composed of two subunits. When their
masses are equal it reads

should be interpreted as the CM coordinate, and y. are two

-

Sty ~ § d*be Pei) [11B+ 5 5) +7,(— §5)-
~nG+ 19,0~ 1 9ol
where 4 is the momentum transfer. As we can see the only essential difference between
the two formulas are the “effective masses” #,%,. Similar considerations can also be applied

to the bremsstrahlung process (the role of the photon mass plays its factor #).
Now let us analyse the 5 dependence of &(5, #,—n,). Having the explicit form of

5(2}, n.—n1) given by (3.3) we can perform the Fourier transform and get

- 1 - - - - -
D(s, n,~11) = -~ [~io(na—n)v +(v x e;) + m.o , 1K(Is{m,) (3.6)
2n
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R e a e d N v -
where y = exa— +e,,a—, and K, is the modified Bessel function. This wave function
x y

behaves as |s|~! for small 5. Though this does not make the expression (3.5) for the amplitude
to diverge (there are factors which cancel it: e.g. d%s = sdsdy) it favours the configuration
where the two subunits are at small transverse distances. A way to introduce phenomeno-
logically some different transverse coirelations in the wave function is to use some trans-

verse formfactors F,(q) which cause faster decrease of ®(q) at large g, hence make &
more regular at small 5. For instance, if we multiply & by F, (q) = mg*+m2)'"* we get

>, - 1 . - - - - —-m ;’
(s, =1y = 5 [—io(n—n)y +(F x&)+m,o, Je "

which is regular.

In our wave functions of hadronic fluctuations discussed below we shall use such
form factors hence modify these wave functions at small distances between the subunits.
One should stress however the point that since (3.6) seems to be in good agreement with
experiment, there is no evidence in QED for any *‘short distance transverse correlations”
between the subunits of election-positron fluctuation. This is not so in hadronic processes
(see below).

The dependence of @ on 5,—n, is the next point of our discussion. We have been
describing the production process in the laboratory frame, i.e. in the frame where the
target is at rest. How to describe it in the rest system of the projectile (when the projectile
has mass zero we shall understand by the “projectile system’ — a system where the projectile
energy is small)?

The criterium for correctness of a procedure to go from one system to another is an
identity of the physical contents of the calculational algoiithms in both systems. This
criterium is met when the following prescription is applied:

a. The wave functions @ are assumed form-invariant (hence e.g. (3.3) has the same
form in the projectile rest system).

b. The longitudinal components p, of the momenta (the only objects which should
be transformed) are identified in the laboratory frame with the “light cone™ variables
(compare [S]):

p+ =z(E+p) - p.
Pzt

We shall not give the proof that our criterium is satisfied in QED processes (the
reader is 1eferred to Ref. [4]). Neither shall we argue that there is only one solution to
this problem. We shall only discuss the consequences of this prescription which has been
tested so far on some very simple production processes of QED with the wave functions
similar to (3.3). The functions describe noninteracting pairs of particles. Perhaps the
same prescription could be applied to some very loosely bound systems e.g. positron-
jum whose binding energy is a very small fraction of the electron mass: it is of order a?m,
where o = t3+. Then we would have a method for “boosting” the nonrelativistic wave
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functions of such systems to the frames where they move with relativistic velocities. The
procedure would be as follows: (/) Take the wave function @(k) of the system in its
rest frame and in momentum representation, where k is the relative momentum:
k= §l+(k,z~k22)§z. {if) Write the longitudinal momentum in terms of #’s:

k) = §(q 5 kiz—kaz) = §(q,, M1, ~12))

as n, = (m,+ki,) M=, 5, = (m,—k,,) M~! in the projectile rest system, and M is the
rest mass of the positronium. (iif) Identify @(g 1> My, —1,)) with the relativistic wave
function. Note that in the rest system of the positronium the scale for relative momentum

M

inthe fast moving frame, however, the scale for zcomponents is r &
am, am,

which goes to zero as o increases. We do have therefore the Lorentz contraction built
into 9:;@),’ M, —n2))

If this “boosting procedure” is correct one can calculate photoproduction of para-
and orthopositronium in a strong Coulomb field [7]. In fact the calculations are simple
because the radius of the positronium is much larger than the radius of the electron-positron

1S ro &

fluctuation
am

compared to mi) hence, in the momentum space the positronium wave
e e
function acts like a Dirac d-function. Incidentally, it is impossible to test the results of
such calculations against anything known (except a Weizsacker-Williams method which
does not permit production of orthopositronium) because the present status of QED
does not permit any reliable calculations of e.g. photoproduction of orthopositronium.
The process of photoproduction of positronium gives some extra insight into the
physical interpretation of the formfactors. The following example illustrates this point [7].
One can compute the amplitude for positronium photoproduction in a strong Coulomb
field employing a field theoretic interaction Hamiltonian which couples positronium field,
treated as an elementary pointlike particle with spin zero for parapositronium and spin one
for orthopositronium, to the electron-positron field. For instance in the case of paraposi-
tronium we would have

H' = iG [ d®xP(x)ysp(x)g(x),
. B . T . .
with G = 16n \/ —, where B is the binding energy of parapositronium. Then, one can
m,

compute the amplitude in the same way as one does in the case of Delbriick scattering [4]
except the outgoing photon is replaced by positronium. The three contributions to such
process are depicted in Fig. 3.

Although the amplitude obtained in such a way differs from the one obtained by
boosting the nonrelativistic positronium wave function as described above one can make
them identical [7] by multiplying the vertex of a pointlike positronium by the transverse
formfactor:

Bm,
F (g9) = Bmtg®
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So, such a form factor does introduce a structure to a pointlike particle. Note that
if the incident particle does not interact with the target the two descriptions
are identical provided we allow for formfactors. They are different, however, if the
incident particle does interact with the target.

positron
positronium {
electron
al)
b)
Fig. 3

Now we know enough (hopefully) about QED diffractive processes to discuss extra-
polations to hadronic diffractive production processes. Let us discuss a typical process
of proton dissociation:

p = attn

We can proceed as in QED. First we expand the physical initial and final states in
terms of bare states:

17> = JZ[Ip>+Zelnny+...]
Inny = JZ[—elpy+inmy+...],

where the amplitude of neutron-pion fluctuation should be small to satisfy the well estab-
lished experimental fact that diffractive productionis much (~ 10 times) weaker than elastic
scattering. (Since we do not have small coupling constant at our disposal as in QED we
have to check in the end that the amplitudes ¢ we are working with satisfy this condition.

. - —
Pl Paqr = €2 rz,w—q
PR

57:3; w — —
pPz=ezppw+q
Fluctuation of proton into neutron and meson
a)

- i -~
P S
p P
—0—\n i . —-—-\\n
b)

Fig. 4
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More precisely: that the renormalization constant & ~ 1.) We compute ¢ again from per-
turbation expansion. For example for pseudoscalar coupling we have (the notation is
explained in Fig. 4a)

gu(paysu(py)
E(p) - E(p2)~ E(P2) 00

&pipy) ~

O
i VEA4+n,—n) US[@, - D+ % (1=, +DMa,JU,

Q*+ A +n—n)p? + 5 (L+1,—12)*M?

@

g T T ot m
= — wﬁm \/% (IL+n,—n,) U, (g, n,—n)U4, 3.7

where
&G, ny—my) = [0, g+ 2=+ DM ] [¢* + L A+~ )p* +
+ (1 +ny —’12)2M2]_1,

M is the nucleon mass, y— meson mass. Its Fourier transform:

. 1 . -
¢(S3 772_’71) = 2_?; [IJJ, ‘Pt %(’I:"?z‘*l)Maz]x

x Ko(5| V& (L+n, —nu® + £ (L4+n, —1,) M),

It should be stressed very strongly that we use here a model of the physical states
of proton and neutron-pion in close analogy to QED expressions discussed earlier. In
contrast to QED, we do not have here a reliable theory to check them. Hence, right from
beginning we do phenomenological analysis in which the expressions analogous to QED
expressions are the zeroth approximation and we expect some deviations in first approxima-
tion. We shall introduce these deviations by introducing transverse and longitudinal
correlations into the wave function of the nn system. E.g. a transverse formfactor F, (g)
corrects @ at small |s|. From our discussion of #,—#,; dependence of & one can expect
that some corrective factor, a longitudinal formfactor F({n,—n,!), may also be needed.
Such a formfactor changes the longitudinal correlations between the fluctuation subunits.

The operator of diffractive scattering . is in this case

M = ?p(};J_ —';,J_) +?n(;’n_1_ - En_]_) +)71z(;1r_]_ _Enl) -
~uBu — e TPy —Fer ) (3.8)
and the transition matrix element (compare Fig. 4b)

Sy = —<plMByey + X e, Crinl M . (39)
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Our calculations are being performed to first order in ¢, hence, to this order, the amplitudes §
of (3.8) can be taken as realistic amplitudes of elastic scattering of protons, neutrons
and pions on a given target. This is so because the difference between physical and bare
particles is taken to first order in &

In order to test this model we have computed [8] the total and two differential cross-

do do
-sections (717’ de) for p+p = n+n+p. The results when compared with the

existing experimental data look very encouraging (compare Figs 3 and 4 and Tables 1
and II of Ref. [8]). Some transverse and longitudinal correlations had to be introduced
there in form of formfactors,

These first results suggest that if we follow the technique of QED outlined above
we have to correct quite definitely for correlations between the subunits in the transverse
direction. It is in fact very amusing that the diffractive production cross-sections are
probing the hadronic wave functions at small distances. It is not clear whether we
have to introduce correlations in the longitudinal direction. The problem of existence of
correlations of the longitudinal degrees of freedom of bare nn in the fluctuation is complica-
ted because it overlaps with the problem of the off shell (off-mass-shell, off-energy-shell)
propagation of the fluctuation subunits [8]. The degree of such overlap is not yet well
understood and the results of correcting transition matrix elements for such two physically
different effects are similar, hence difficult to distinguish experimentally. This problem
demands further careful analysis. It may become of nonnegligible importance in the
case of diffractive production on nuclei (see the next Section).

As we have already said our choice of the subunits of the proton was based on the
assumption of analogy between hadronic and QED diffractive processes. But one can make
some other choices. For instance recently a different suggestion was made by Drell and
Lee [9]. They construct the wave function of a physical nucleon from just two subunits

I = "QED~way " of describing

diffractive dissociation
al) b)

Bound state of a pair { e —=="" "Nuclear~way " of describing
of bare particles .\ diffractive dissociation
c)
Fig. §

(in first approximation): a bare nucleon and a bare meson. Without going into the other
differences between the two models, just this first assumption differs substantially from our
description which (in first approximation) assumes three subunits: two bare nucleons
and a bare meson (see the expansion of the physical proton state, given above). This
difference introduces some essential differences in the structure of the transition matrix
element: In our model there are important destructive interferences between the contribu-
tions a) and b) (see Fig. 5), instead, if we use the wave function as proposed in Ref. [9],
we have only one process contributing to the diffractive production (see Fig. 5¢)) — just
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as in e.g. deuteron dissociation on a nucleus. One might say that our way of ascribing
structure to a nucleon is a “QED-way”, the way of Ref. [9] one might call the “nuclear
(or atomic) way”.

Note that if we could neglect the process a) shown in Fig. 5) we would not, in general,
be able to distinguish between b) and c¢) since a formfactor in b) can imitate the wave
function of c).

4. Diffractive dissociation on composite targets

There exist many measurements of diffractive dissociation on nuclear targets. Beusch
and Lubatti are going to discuss them in their lectures. Theory of such processes has not
been very developed, however. There were very few attempts to relate such processes to
the “‘elementary act” of diffractive production on one nucleon. In this lecture 1 shall
outline one such possibility without giving, however, any numerical results because they
are not ready yet.

One can imagine many processes to happen during the diffractive dissociation of
the incident hadron on a nucleus but we shall limit ourselves to a combination of just two

a. multiple re-scattering of a fluctuation

b. a possible multiple excitations and deexcitations of the fluctuation subunits during
their travelling through the nuclear matter.

These two processes are depicted in Fig. 6 and 7.

// © ° // /’O“\ /O’/
@ = _'6‘?\0—\ Q) = M___
© o
o] o fo)
o)
a) b)

Scattering of o bare incident particle Scattering of a two subunit fluctuation
before the fluctuation tokes place

Fig. 6
e} o/
A subunit is created But finally comes out
in an off shell (excited) as a physical particle
state o
O
Fig. 7

The process shown in Fig. 7 one may call “dressing-up” a subunit which is born “bare”
in a fluctuation. This process may not influence appreciably the process but it would seem
to be reasonable to at least keep in mind a process which has to supplement the physical
picture of our mode} which is based on the concept of bare subunits which eventually become
real particles.
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Let us discuss first the process a. It is convenient to describe the structure of the
target nucleus in terms of its ground state wave function (we shall not consider any excita-
tions of the target nucleus) which is usually given in the position space. Hence we shall
use the fluctuation wave functions also in the position space representation — like in
formula (3.5) which is a good starting point for constructing nuclear amplitudes. For
simplicity sake let us limit ourselves to the two subunit fluctuations (as in the process
considered in the previous Section). We proceed as Eq. (3.5) tells us to: we construct
a profile, sandwich it between the initial and final state wave functions and take a two
dimensional Fourier transform over the CM coordinate. The profile is constructed as
in Ref. [10}. We shall limit ourselves:to the simplest possible form of the ground state
nuclear wave function:

A
W(rl voa I‘A) = I—Il (Pj(rj)
j=
and then construct from it a two-dimensional density distribution of nuclear matter
A
11 g,(Ej), where
j=1
+ o0
- - 2
Qj(sj) = _f dzjf‘Pj(Sj, z)e.
-0

Let 5,, 5, be the transverse position vectors of the two subunits of the fluctuation. The
total profile operator [10] with respect to the fluctuation subunits is:

4
I(R, sy, 8y) = 1~ H1 {1- jdzsjgj(sj) [vi1(R—s, +§j)+
j=

+9,20(R=53+5) =711 (R—51 +5)y2(R—5, +5)]} 4.1)

where R is the transverse distance between the CM’s of the two colliding objects and 7,
1s the proﬁle of j- th nucleon — k-th subunit elastic scattering (in position space). Since
$y = 11,5, S, = 1,5, we have the following expression for the amplitude on a nuclear
target:

-

<flc/”li>(b) ~ jdZReiZ'EfdZSe—inzl:;';‘f'in;l:z'sx
x TR, =15, +n5)U" DG, 121U, 42)

where, by inserting spinors, we have symbolically marked a possible spin dependence of
the fluctuation. The multiple scattering from nucleons in nucleus we took as spin independ-
ent — just for simplicity sake. There is also a contribution from the second process shown
in Fig. 6a)

(fl e |iy gy ~ § dPse™ ik stimbasomidn =m0 sy (s, p, —n,)U x

x [ d*Re'" [ (R) @.3)
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A
where I'(R) = 1— [] (1— [ d?sjoi(s))y;(R—5))), y/’s are the profiles of j-th nucleon —
12

J
incident particle. The complete amplitude is the difference of (4.2) and (4.3) (compare

e.g. (3.9)
SNy = —fIMND gy + LSl AMTD

It is interesting to see how the diffractively produced system gets attenuated in nuclear
targets. The experiment shows (compare talks given by Beusch and Lubatti) that such
systems show much lower attenuation that the one one would get by just adding the attenua-
tions of the components. From our formulae (4.2)(4.4) one’can see qualitatively the
effect of “‘diffusion” of the fluctuation components as depicted in Fig. 6b). The relative
spatial extensions of the fluctuation wave functions are probably the most important
factors in determining the size of the attenuation effect. Let us consider two limiting cases

(i) the wave function @ is a pointlike object

(ii) the wave function @ is spatially much more extended than the target nucleus.

In the first case we get appreciable attenuation: each nucleon is hit by both components
and the cross-section of the diffractively produced object on one nucleon in approximately
given by a sum of individual cross-section, reduced slightly by “‘screening” (the last term
of (4.1)). In the second case however there will be virtually no overlap between
yﬂ(f{—gl +§j) and yjz(ﬁ—§2+§ ;) because CHS <I§jl>av. So, we have an approximate
equality

1= [1=(7(R=5)+7R=52) —7172) '~

A 1=(1 =7 (R=5))" 41— (1= 7(R—5,))*
where

71,2(R‘31,2) = jszij(sj)Vj(ji“;],z +;j)
(which we assume to be j-independent). So, we finally get

(I Mi> ~ | d2Rd%seFE] —T(R)+T'y(R)+T5(R)} x
x g7 Tk Sy, py ),

where I', I'y, I', are single particle profiles (as defined below (4.3)) of the incoming
and outgoing particles. Now, the single particle profiles are, typically, of the form 1 —e~**T®
and a two particle profile of the same type is I --e 2“1 +79T®) where T(R) is the density
of the nuclear target at the transverse distance R. The single particle profiles produce
weaker attenuation than multi-particle profiles. Hence the case (i) represents weaker
attenuation than the case (i). So, when a diffractively produced system diffuses through
the target nucleus as shown in Fig. 6b) its absorption is weaker than if all the subunits
travel in one close pack.

To illustrate how dramatically the attenuation is diminished in the case (i) let us
assume that all three single particle profiles in (4.4) are the same

I'(R) = I'y(R) = I'y(R) = 1 —e~#77(A),
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Then, the total profile of the process is
—I(R)+I(R)+T(R) = 1—e 2T®)

and the total cross-section of the diffractively produced object on one nucleon of the
target is zero. This is so because, by definition (see e.g. [11]), it is extracted from the ex-
periment by the following parametrization of the profile:

F'(R) — e“%dzT(R)_e—%dT(R)

where o, is interpreted as such a total cross-section.

Another factor increasing transparency of a nucleus is the process depicted in Fig. 7.
This process should further lower the single particle cross-sections. One can describe
it as it was (in a different context) proposed by Van Hove [2]. There, one can find
general arguments showing that a particle jumping in subsequent collisions between
various excited state increases its penetrability in comparison with a particle which does
not. Such processes should be more important in diffractive production than in elastic
scattering because in the former the particles are likely to be born in an “off-shell state™.
Although this process does not seem, at first, to fit to our scheme because our assumption
(ii) of Section 2 said that the subunit scatter only elastically, one can remedy the situation
by employing the technique suggested by Van Hove: one chooses such combinations
of the excited states which do scatter back into themselves, hence the technique of handling
multiple elastic scattering can be used also in this case.

The author is grateful to A. Bialas, T. Jaroszewicz, J. Jurkiewicz, A. Kotanski,
H. Lesniak and L. Le$niak for many discussions and common work on which the content
of this paper is based.
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