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This is a review of the theory of coherent nuclear production of multi-body states
having a broad mass spectrum. Two kinds of phenomena aie of central interest: the produc-
tion of broad enhancements such as A4; and Q, and inclusive spectra in very high energy
hadron-nucleus collisions. The major topics discussed are: 1) the very interesting and in-
formative inclusive spectra that are expected to result from nuclear collisions if diffraction
dissociation plays a major role in the underlying hadron-hadron collisions; 2) a theory of
coherem production that allows for strong coupling between the elastic and coherent produc-
tion channels, the longitudinal momentum transfer, and changes of mass resulting from
successive diffractive collisions within the nucleus; 3) Van Hove’s model for explaining the
astonishingly small total cross-sections that have been extracted from multi-boson production
experiments, and the questions raised thereby concerning the structure of the amplitudes
that describe the scattering of the produced states by a system of nucleons.

1. Introduction

There are at least two motivations for studying the coherent nuclear production of
states lying in a broad mass continuum:
1. the astonishingly large mean free-paths of 3x, 5x, and Knn systems observed in nuclear
production experiments [1];
2. the possibility that at very high energies a major portion of all inelastic channels in
hadron-hadron collisions are diffractively produced [2}, [31
In connection with the puzzlingly small cross-sections that the multi-boson enhance-
ments appear to have, Van Hove [4] has proposed a theory in which transitions within
the mass continuum play an essential role. In the conventional (Glauber) analysis of these
production processes, the optical potential is assumed to be diagonal in mass, except,
of course, for the single and small element that describes production. In Van Hove’s
approach, on the other hand, the optical potential is an off-diagonal and continuous
matrix in mass space, without any singular element §(m—m’).

* This article is based on lectures delivered at the XII Cracow School of Theoretical Physics,
Zakopane, June 8—18, 1972,
** Address: CERN, 1211 Genéve 23, Switzerland.
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Turning to the diffraction excitation model, we recall (see Fig. 1) that its basic
assumption is that in an NN interaction there are three underlying s asymptotic mechanisms:
where the ingoing N in unexcited while the target N is excited (process I); where the target
is unexcited and the observed N is a product of a fireball decay (process Il); and where
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Fig. 1. The various contributions to the inelastic cross-section in the diffraction-excitation model. The

observed particle is designated by 0. The invariant cross-section Edojd®p in {mb/GeV?) is sketched for

pp — pX at fixed angle and as a function of x; the separate contributions of diagrams I, II and IIT are
shown as dashed curves, and the full curve is their sum. For further details, see Ref. [3]

both N’s become excited (process I1I). All these excitation processes are assumed to be
diffractive. We recall that process I leads to particles crowded into the immediate neigh-
bourhood of x = 1, whereas processes 11 and 1II lead to broad spectra in x. If this descrip-
tion of inelastic processes is correct, then of these three portions of all the inelastic channels
those, and only those that arise from process II can be coherent in nuclear production,
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for it is only in this category of collisions that the particle in the nucleus is unexcited [3].
The qualitative aspects of the proton spectrum in nuclear scattering would therefore
differ markedly from the ISR observations, and the same would hold true when pion
spectra from np and n-nucleus collisions become available at NAL.

Finally, a remark that could be of practical importance. If diffraction dissociation
is really such an important contribution to multiple production, then at very high energy
accelerators secondaty pion beams produced in large 4 materials will bz far more copious
than one would infer from nucleon-nucleon collisions.

2. Inclusive proton spectra from proton-nucleus collisions

A qualitative understanding of the inclusive spectra that one would expect in nuclear
collisions can be easily attained if one bears in mind the following essential points:

(/) the Feynman x of a particle of mass m emerging from a fireball of mass M in process 11
is xx= m/M,

(if) the observed p, distribution in processes II and III results from a convolution of
the p, distribution in the initial fireball production step, and the subsequent decay
of the fireball;

(iii) a nuclear production amplitude can only be coherent over a nucleus of radius R, if

Rty <1, ie., if

- 5 22, @
R
where M, and pp are the mass and lab. momentum of the incident particle.
Consider first an experiment where the target nucleus in known to be in its ground
state after the collision, as in the streamer chamber experiment planned at NAL [5].
There is then no incoherent background, and processes I and III are completely suppressed.
On the other hand, II is coherent, and therefore

d d
(25) =a(e)
d p Nucleus d p Hydrogen

In view of the observations listed above, the (x, p;) distribution in such a nuclear experi-
ment will have further characteristic features. Because of (iii), the range of masses M that
can be coherently produced is limited, and from (/) it then follows that only the values
of x that exceed

Vi

R

Xo "M _|——
2py,

2.2)

will show the enhancement. (Here we assumed (2p;/R)* > M,) In the reaction
pA — pA — anything, the p, distribution will narrow appreciably because of (ii), which
implies that the initial fireball production step in a coherent nuclear process is restricted
to transverse momenta that are far smaller than in a collision with a free proton. In such
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a nuclear experiment, one should therefore see the considerably narrower p, distribution
implied by the fireball decay alone. These qualitative arguments are summarized in Fig. 2.

Experiments on heavy nuclei, where one cannot ensure that the nucleus remains in
its ground state, are also of interest. Here the coherent enhancement of Il vs I and I1I can
be amplified enormously by going to large A. Furthermore, the larger range of radii that
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Fig. 2. The inclusive cross-section in the reaction p4 — pAX, where A is a nucleus which is known to

remain in its ground state. The dashed curve is process II in hydrogen; the solid curves show two nuclei

with A; > A4,. It should be stressed that the curves for 4 # 1 are not based on calculations; they are
merely intended to illustrate the arguments in the text

then become available should, according to (2.2), lead to an 4 dependence of the shape
of the inclusive x distribution. Offsetting these attractive possibilities is the danger that
experiments in heavy nuclei may be difficult to interpret precisely. There are at least two
reasons for this: 1) the incoherent background could be large due to cascading inside the
nucleus; and 2) the coherent rescattering of the diffractively produced states is determined
by amplitudes concerning which we have no knowledge at present. This last point shall
be discussed at length in Section 5.
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These reservations need not mean that the inclusive spectra from scattering by complex
nuclei will never teach us anything concerning the basic processes. Rather, what will be re-
quired is a well-planned experimental program. Presumably measurements on heavy nuclei,
being the easiest to execute, would come first. For large 4, and medium x, the incoherent
background should be tolerable, and it should therefore be possible to verify whether
the qualitative features as sketched above are correct. Really precise interpretation will
require measurements of inclusive spectra from deuterium in the single and doubte scattering
region, with the final deuteron detected [6], and similar measurements on light nuclei
such as He [5].

To summarize, such an experimental program would provide the following infor-
mation.

1. The experiments in heavy nuclei would show whether the x ~ 1 spike observed
at the ISR is diffractive, because if it is not, its counterpart in the x < 0 hemisphere,
process II, need not be coherent over the nucleus; such experiments would also provide
a rough check on the mass spectrum assumed in the diffraction excitation models.

2. The small p, experiments on the lightest nuclei, where single scattering dominates,
would permit one to disentangle the contribution to the (x, p ) distribution arising from
fireball production, and from fireball decay.

3. Coherent scattering from deuterium in the double scattering region would deter-
mine the amplitudes for rescattering of diffractively produced states by nucleons, just as g°
photoproduction in the same region provided invaluable information concerning the o°N
amplitude [6].

3. Propagation of a mass continuum in nuclear matter

From the foregoing discussion, it is clear that a detailed investigation of the ideas
just sketched requires a theory of coherent production which:

1) predicts the production amplitude for an exceedingly broad mass continuum,
and allows for mass changes within this continuum as the wave propagates through the
nucleus;

2) accounts for the minimum momentum transfer given to the nucleus; and

3) treats the coupling between the discrete incoming state, and the mass continuum
non-perturbatively.

Van Hove [4] has already developed an elegant formalism that handles point 1);
however, he was able to ignore points 2) and 3) because he was not concerned with copious
production of states of exceedingly high mass. The formalism described below is therefore
a fairly straightforward generalization of Van Hove’s designed to include the minimum
momentum transfer and the possibly strong over-all coupling between the nucleon and
the N* continuum [7]. Unfortunately no explicit calculations have as yet been done
with this more general theory, and the only concrete results are those of Van Hove.

The incoming particle, and the states into which it may dissociate, are described
by the wave function ¥. In general the dissociated system will have a number of internal
variables, but we assume that the evolution of the state can be adequately described
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solely in terms of the mass. ¥ is then a column vector in mass space, having a discrete

component at m,, the nucleon say, and a continuum for m > m, . Let v be the total energy,

M the diagonal mass matrix, and —2ivW the optical potential, which need be neither

Hermitian nor anti-Hermitian. For simplicity, we shall, however, assume that W is a real,

symmetric, positive-definite, and v independent operator. This corresponds to a purely

absorptive medium where all eigen-mean-free-paths are energy independent when v — co.
In nuclear matter the wave equation then reads

V24 —M*-2iv W) ¥ = 0. 3.0
We reduce this to a one-dimensional problem with the usual high energy ansatz
lIl — el'vz¢,

where & is a slowly varying function of z, the co-ordinate along the incident direction.
Then (3.1) becomes

do
i— = Ho; (3.2
dz

that is to say, it looks like a Schrodinger equation with the non-Hermitian Hamiltonian

2

H=——iW. (3.3)
2v

As we see, M plays the role of the momentum, v that of mass, and z that of time.

Equation (3.2) only applies inside the nucleus, which for our purpose is the slab
0<z< L, where L = 24/ R?*—b?, R being the nuclear radius and b the impact parameter.
For z < 0, and z > L, W = 0. What we therefore seek is a solution of (3.2) for z > 0
that conforms to the initial condition that at z = 0 the amplitude for mass m, be one,
and that for all m = m; be zero:

®d(mz) - d(m0) = 1 (m = my).
=0 (m>=m,) 34

The imposition of such an initial condition is most conveniently done in terms of
Green’s function belonging to the ‘‘stationary state” equation associated with the ““time”
(actually z—) dependent Schrédinger equation, (3.2). This Green’s function satisfies the
equation

(w-H) %) =1, (-5
where @ is a complex variable.

The notation of (3.5), although convenient, is deceptively compact. It is best to separate
explicitly the discrete proton state at m = m, from the continuum m > m,. That is,
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we write 4 and W in matrix form

Yoo(®) G om(w)

Y(w) = , (3.6)
gmo(w) gmm’(w)
_( w(m')
W= (w(m) U(m, m') ) (3.7)

The subscript 0 in (3.6) refers to the discrete state, while in (3.7) 1/2x is the proton’s mean-
-free-path in the absence of coherent coupling (i. e., 2a4 = n ay), and w(m) is proportional
to the amplitude for producing a state of mass m when a proton strikes a free nucleon.

We now demonstrate that the desired solution can be written conveniently in terms
of the functions defined in (3.6). Define

i -
ZE(myz) = erdwe“m‘goo(w), (3.8)
C
E(mz) = Z—’n J dwe™ "G, (o), (3.9)
C

where C lies just above the real axis of the w plane. Using (3.5) we immediately find that

<i i —H) E(myz) = i6(2), 3.10)
dz
<i i —H) E(mz) = 0. (3.11)
dz

Thus Z is certainly a solution for z > 0. Furthermore, it vanishes for z < 0 because in
the right-hand side of (3.8) and (3.9) C can then be closed in the upper half-plane, for
%(w) cannot have any singularities there as they would correspond to exponentially
growing solutions (more on this below). Thus Z(mz), for m = m,, is the desired solution
®(mz), whereas =(mgz) is related to the solution by

E(mgz) = 6(2) P(mg 2). (3.12)

That &(m,z) has the required unit amplitude at z = 0 is assured by the coefficient of 6(z)
in (3.10).

Having established the relationship between = and the sought-after wave function,
we shall henceforth replace = by @ as we are only concerned with values of z inside the
nucleus where = = @.

Next we show that a solution of the continuum problem (m = m,) by itself provides
a complete solution of the problem including the discrete state. For this purpose we note

that the “differential” equation (3.5) is equivalent to the integral form

g = G—iGW49. (3.13)
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Here G is the diagonal matrix

! 0
(O—'wo
G = s 3.14
(@) d(m—~m') G.14)
w—w(m)
and
wy = ﬁz) —ia
0 2v )
m?
w(m) = —, 3.15)

pAY

while W is obtained from (3.7) by putting a = 0. Observe that v —w, is just the complex
momentum that would describe the elastic wave if there were no coherent coupling to
other channels. The 0—0 component of (3.13) is then

[+ &)

{ .
Gop = ——— — jw(m)gmodm. (3.16)
0)—0)0 w—wo
my
Next we write the m—0 element of (3.5):
[w—w(m)]G,o+i | Uim, mNG,.odm’ = —iw(m)%,. 3.17)

Finally we introduce Green’s function D(mm’; w) of the continuum alone:

[w—w(m)]D(m, m"y+i [ U(m, m")D(m"”, m")dm” = é(m—m'),

my

where, of course, m, m" > m;. Then the solution of (3.17) is just

Go = —i% o0 {D(m, mYw(m')dnt, (3.18)
and from (3.16)

1

By = — .
T w—we— § w(m)D(m, m’)w(m'Ydmdm'

(3.19)

These last two expressions give the desired quantities for elastic scattering and pro-
duction in terms of the solution of the continuum problem. Equation (3.19) describes the
modification of the elastic wave propagation due to virtual excitation of continuum
states [8]; this elastic mode is no longer described by the single pole at @ = w,, but has
a much more complicated structure as a consequence of which the wave function is not
just a single exponential. For large depths z the propagation will be described by the
singularity closest to Im w = 0.
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4. Eigenfunctions of the effective Hamiltonian

We now turn to the effective Hamiltonian (3.3):

»s2
vl

H = —iW, 4.1
2y

where W, it will be recalled, is real, symmetric, and positive definite.

It is of course not clear that such a non-Hermitian operator possesses a complete set
of eigenfunctions, efc., and no general investigation of this question has been attempted.
Instead we shall assume the existence of eigenfunctions, and then see what properties
they must possess. Then we shall examine a special W where an explicit and complete set
can be constructed. Finally we shall see that from this explicit solution one can infer the
existence of a complete set under conditions that, for all practical purposes, are really very
general.

Let ¢, and ¢,(m) be the eigenvalues and eigenfunctions of H. As W is symmetric, the
right and left eigenfunctions of H are identical, and the orthogonality condition is !

§ dmg,(myp(m) = 0 (4.2)
for eigenfunctions belonging to different eigenvalues. As we shall see, in general H has

both a discrete and continuous spectrum; for wave functions in the discrete spectrum
we shall therefore use the norm

J [p(m))Pdm = 1. 4.3)

Observe that there are no complex conjugates in these equations — this is not a misprint.
It is now a simple exercise to show that

2
Reeg, = <M—~> , Imeg, = —(W>, “.49

2v
where for any operator O the expectation value is defined as

(0, = ) (p,',(m)O(:n, m")g,(m')dmdm’ . .5)
§ wim)p,(mydm
Once more, there is no misprint concerning the complex conjugates. Equation (4.4) shows
that the eigenvalues all lie in the lower half plane; we shall actually find that for the contin-
uous spectrum Im ¢, = 0, but this is quite consistent with (4.4) and (4.5) because the
denominator is then infinite.
Green’s functions of the preceding section can be written in terms of the ¢, provided
they form a complete set; for example,

& () = Z () Falimo) .6

w—g,

n

Observe that %(w) is analytic for Im @ > 0 because of (4.4).

! Note that our integrals over m are a shorthand for a single term at m = mo, and an integral over
mo my.
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As we saw in the argument leading to (3.18) and (3.19), we actually only need to
concern ourselves with the continuum subspace m = m,. That is to say, it is not really
the eigenfunctions of H that concern us, but of its projection onto the continuum subspace.
Calling these y,(m), and their eigenvalues y,, we are therefore interested in the equation

[ty — 0(m)]p (m) +i ]? U(m, mNy,(mNdm' = 0, 4.7

my

where m, m’ = m, throughout. Green’s function D introduced above is then

Do, s @) = Z yulmyp(m’y (4.8)

n

provided the set v, is complete. The real and imaginary parts of g, are given by equations
analogous to (4.4).

It is very instructive to have at least one explicit solution of a problem of type (4.7).
For that reason we consider the case of a separable kernel

U(m, m')y = gu(myu(nt’). (4.9)

Aside from rendering (4.7) soluble, this optical potential automatically obeys the threshold
conditions if u(m) = 0 for m < m,.

We begin by showing that despite the anti-Hermitian interaction iU, there is a continu-
um of solutions with real eigenvalues ¢ = p?/2v, where p = m,. Write (4.7) as follows:

(P> —m®)y (m) +2ivgu(m) | u(m’)p,(m)dm’ = 0. (4.10)

Then the solutions with real p are

_ 2:»gy(p)u(m) 1
vy (m) = 3(m—p)- PPemPtid 1+2ivgd(pP+id)’ (&.11)
where
J(w) = [I;—(—V)JA dm. (4.12)
w

These are like the familiar “in” and “out” states of scattering theory. There are also
discrete states if

1+2ivg J(w) =0 (4.13)

has roots that do not lie on the real axis m; << Re w < 0. In virtue of (4.4) these roots
must lie in the lower half plane (at ¢,, say) because they correspond to the normalizable
eigenfunctions

pu(m) = — . 4.19)
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The orthogonality relation for the continuum states is

{ dmy, (myy (m) = 6(p—p'), 4.15)

and onc can show explicitly that the continuum states, together with the bound states,
form a complete set:

m=m) = ¥ pilm)pn) + [ dpyi (myp; (). (.16)

my

Equations (4.15) and (4.16) have the same appearance as in the familiar Hermitian problem,
but it must be remembered that this is somewhat deceptive because y~ # (yp)*.

The separable kernel (4.9) certainly provides a wholly inadequate description of the
underlying scattering process. Nevertheless, it is a very useful beginning, because it can
easily be generalized to

U(m, m'") = Z gu(mu,(m’). 4.17)

With the help of a simple matrix notation, H with this kernel can be diagonalized as be-
fore, and completeness established. Thus the problem is again reduced to quadratures,
which is very convenient for numerical computations. Furthermore, if all the u;(m) vanish
for m < m, the threshold condition is satisfied, which is not the case with most kernels
that may, for other reasons, be convenient (see Eq. (5.4), et seq.). Finally, by a judicious
choice of the u; one can favour transitions with m close to m’. For all these reasons it is
likely that the form (4.17) will provide the most useful kernel in the applications sketched
in Section 2.

5. Van Hove’s model; the mass dependence of the optical potential

Van Hove’s model [4] describes the production of a continuum state with a broad
but reasonably well-confined mass spread, such as A4; or Q. In the language of Eq. (3.7),
the production amplitude w{m) is restricted to this mass range, and the optical potential
U(m, m") permits transitions only within this range. Concerning the potential U, Van Hove
argues that it is a smooth function of m and m’; he then shows that this leads to an apparent
increase of the over-all absorption length of the produced state in nuclear matter, in accord-
ance with the observations cited in Ref. [{]. This smoothness assumption is rather contro-
versial, and involves some interesting physical concepts. The major purpose of this
section is an examination of precisely this point. But before doing so, we must dispense
with a few technical details; in particular, we must show how Van Hove’s results emerge
from our formalism, and describe his solution of the coupled-mode propagation problem.

By hypothesis, the produced states that we are now concerned with are only a minor
portion of all inelastic channels. Therefore w can be treated to lowest order, and %y,
in (3.18) may be replaced by (w—m,)!. If we then use the eigenfunction expansion (4.8)
of Green’s function D, and carry out the integration as specified in (3.9), we readily find
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that the wave function of the produced state is

] e“iwoz_e—iu,,z
d(mz) = 2 ¢, ——————— y,(in), 3.1y
Wy — Uy
with
e, = | w(m)yp,(m)dm. (5.2)

g

This is Van Hove’s result except that his eigenvalues and eigenfunctions are not our
U, and v, because he goes to the v — oo limit, in which case w(m) = m?/2v disappears
from (4.7). That is to say, (5.1) does take the minimum momentum transfer into account.
For the problems of primary concern to Van Hove, such as © — 4, production, the v — c0
approximation is probably not essential, because even at present energies 2v/(mﬁl—m,2,)
is comparable to nuclear radii. On the other hand, one should note that the v — oo limit
changes the nature of the eigenfunction problem in a rather fundamental way. The finite v
equation, (4.7), looks like a Schrodinger equation with kinetic and potential energy terms,
whereas the v — o0 equation describes, so to say, an infinitely heavy particle which only
has potential energy.

In the v — oo limit wy — i [cf., (3.15)], and the eigenvalues u, become pure imaginary.
For that reason we replace them by —i4,, the latter being defined by the v — oo limit
of (4.7):

Lyp(m) = § U(m, m' )y, (m')dm'’. 5.3)

As Van Hove is only interested in an exploratory investigation, and not with detailed fits
to the data, he chooses a form of U which permits an analytic solution of (5.3), namely

Ulm, m') = A(lm—m'}). (5.9

Equation (5.3) is then solvable by Fourier inversion provided we relax the threshold
constraint m 2= my, and replace m; by —oo. This is also not a crucial approximation,
because in processes such as © — A, one can suppress low masses by making the produc-
tion amplitude w(m) small (or even vanishing) for m < m;+pu, where g is the width of the
mass mixing matrix A. There are, however, more fundamental questions concerning (5.4)
to which we shall come presently.

It is now a simple matter to solve (5.3). We introduce a continuous variable # con-
jugate to m, —o0 < 5 < c0. Recall that m plays the role of a momentum in the Schro-
dinger-like equation, and therefore # is the conjugate co-ordinate. As U (¢f., (5.4)) depends
only on the difference of ‘““momenta”, it is a local interaction in # space, and the eigen-
functions, being those of an infinitely heavy particle, are § functions in co-ordinate space,
and therefore purely oscillating exponentials in the conjugate mass space. Their eigen-
values are the potential at the “point” n where the state is localized.
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To put this into formulae, we introduce the eigenfunctions

1.
Py (m) = 3m e, (5.5)
and then their eigenvalues are
Ay = [ dme " A(m). (5.6)

Recall that 4, is positive definite 1f A is a smooth function, we see that 4, — 0 as
n —» oo. This gives the astonishing result that eigenmodes (5.5) that oscillate rapidly in
mass are less attenuated than those that are slowly varying. To see this more clearly,
observe that if we write

Ay = 3 NGy, 5.7

where n is the nuclear density, then o,y is the total cross-section for the scattering of mode
v, by nucleons. The general aspect that one would expect for 4, is sketched in Fig. 3a,
where u is the characteristic width of the kernel A. Needless to say, by choosing a wiggly
A one can have oscillations in 4, as well.

® tl—‘“‘

“‘n
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Fig. 3. The spectrum of eigenabsorptivities 4,. Curve a is Van Hove’s spectrum [4], and follows from (5.6)
if A is a Gaussian. Curve b results from (5.21), with a Gaussian ¥



Van Hove has carried out a quite complete set of calculations by choosing a Gaussian
form for the mass mixing kernel A and the production amplitude w. His conclusions can
be summarized as follows:

1. because the absorption is maximal for the least rapidly varying eigenmodes y,,
the shape of the mass peak changes with increasing depth. As a consequence heavy nuclei
should show a narrower peak than light nuclei — a most surprising conclusion;

2. if A¢ (which is the maximum absorption coefficient) is kept fixed, and the width u
of the mass mixing matrix A is increased, the total coherent production cross-section in-
creases. Hence if a wide A represents the true situation found in nature, a naive single
channel analysis would erroncously conclude that the nucleonic cross-section of the
produced system is smaller than A,2.

As Van Hove points out, his conclusions stem from the assumption that the optical
potential is a smooth function of m—m', in contrast to the forward scattering amplitude
by a free nucleon which contains a term proportional to d(m—m’). This é function is a
consequence of energy conservation, and therefore only appears in the amplitude after
a time interval 7, that grows with v, whereas the time between successive collisions within
the nucleus, 7., is v independent®. On the basis of this observation Van Hove argues that
the matrix U(m, m’), which describes transitions within the nucleus on a time scale short
compared to fy, need not have a singularity at m = m’.

Bell [9] has raised scrious doubts concerning the smoothness of U. As a model for
diffractive dissociation Bell studies the coherent nuclear scattering of a composite non-
relativistic system [10] which possesses internal excitations. In actual fact, Bell only con-
siders the special case of a non-interacting “‘composite”, and shows that U would then
have the form

Um, m') =d(m—m')gnY on—Vim ), (5.8)

where o,y is the constituent-nucleon total cross-section, and ¥ is a smooth function of
its arguments. (Were U to be fully described by the first term of (5.8), the composite
would propagate without change of state, and with the mean-free-path appropriate to the
sum of the constituent cross-sections.)

We shall now examine the arguments alluded to in the preceding two paragraphs.
As interactions within the composite undergoing dissociation may well be important [4],
we shall generalize Bell’s model, and take the composite to be an interacting two-particle
system. The internal motion of the composite will be treated non-relativistically, but the
motion of its centre-of-mass is described by a relativistic wave equation. Let ;(,,(@Z_f) be the
internal wave functions of the composite system, { and o being the relative coordinates
parallel and perpendicular to the incident direction. The argument is easier to present if
one assumes that all the y, are bound states with a discrete excitation spectrum, but at the

2 What remains somewhat unclear is whether 1, is to be identified with our preconceived and naive
notion of the absorption coefficient.

3 Although this statement is only correct as it stands in the nuclear rest frame, the ratio 7,/¢. is propor-
tional to » in any frame.
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end we shall see that this is inessential and that a spectrum, that is cioser to the physical
problem of interest can be handled in the same manner.

Consider first the scattered wave ¥, that results when the state y, is incident on a
single nucleon. If the centre-of-mass co-ordinate of the composite, relative to the nucleon,
is (b, z), the eikonal approximation for v, is

Y (bz; 00) = —e™ Zxﬂ(og) [r§(®B)+T2(®)], (5.9)

where the profiles I'” are
I = J 6580 [+ 3 )+ - 3 DIn(2Dd?edl, (5.10)
IRB) = = | 2p(@00e B+ § Ove,(0— 3 DxDd?odC, (5.11)

and y, is the constituent-nucleon profile function. I''"’ describes events where only one
of the constituents scatters, whereas those where both scatter are described by I'®,

Over what time interval does the eikonal wave function (5.9) provide an adequate
description of the state? As we are using stationary state collision theory, the answer to
this question must be phrased in terms of z, i. e., it is the distance beyond the scatterer
over which the form (5.9) is maintained. To ascertain this distance, one merely computes
the propagation of the centre-of-mass co-ordinate with the free wave equation, and one
finds [11] that (5.9) is valid for z < va?, where a is a characteristic transverse dimension of
the profiles I'). Once z reaches ~va?, diffraction effects set in, and for z » va?, (5.9)
evolves into a spherical outgoing wave whose scattering amplitudes are given by the
familiar Fourier transform

Fplq) = = szbe'q b[r<“(b)+r<2>(b)]. (5.12)

We now fix our attention on the single scattering portion of ¥,, and examine its
composition as we move downstream at a fixed value of b. Over distances of order va* —
which grow with energy* — the amplitude for finding the internal state y; is given by

m(b) As we see from (5.10), there is nothing that provides a drastic distinction between
the elastic (§ = «) and inelastic elements, and so this short-time portion of the downstream
amplitude does not distinguish dramatically between transitions that do or do not alter
the internal state of the dissociating system. At long times (z > va?), on the other hand,
the scattered wave at a fixed value of b is proportional to Fg, evaluated at g =0, and
from (5.10) we immediately see that

fdzbr; (5) = 6,5 mem) (5.13)

4 This time-dilation effect is contained in our stationary state description because the propagation
is described by a wave equation.
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where f_5(0) is the forward constituent-nucleon scattering amplitude. There is thus a term
in the on-shell amplitude that singles out transitions wherein the internal state does not
change. As one sees from (5.11), the contribution from double scattering does not undergo
such a profound change between the short-time and the asymptotic regimes.

To summarize, for short times (or distances) the amplitude for finding y, in the scat-
tered state is a “smooth function” of 8, whereas for long times the amplitude in the forward
direction is

Fp0) = 04 3 fon(0) + Fi2(0) (5.14)

where F$2) is a “smooth function” of « and f:

(2) vl 2 .o T LNy (B LT,
Fg(0) = — ” fd b f d”odCyp(00)y.,(b+ 7 0)7e,(0— 7 0)xa(00). (5.15)

The quotation marks in the preceding sentence serve to remind us that our model has
a discrete excitation spectrum. To make contact with our earlier discussion, one must
then suppose that in 2 model with a continuous spectrum the same characteristic behaviour
would emerge, and that the 6,; are merely replaced by é(m—m’), while F}i) becomes
a smooth function of m and m'.

Having disposed of the scattering by one nucleon, we finally come to the problem of
real interest: coherent nuclear scattering. We recall [12], [13] that when the incident
energy vastly exceeds the characteristic excitation energies of the collision partners, the
wave function in the near zone (i. e., before diffraction becomes important) can be evalu-
ated as if all internal motion were frozen during the collision. If the transverse co-ordinates
of the nucleons with respect to the nuclear centre-of-mass are y:, the wave function of
the dissociating system immediately after a coherent collision 1s

A nd - - - - - - -
e‘“’(_ll (17, +yi+ 7 I [1 =76 +yi— T 9D oxa(e)) (5.16)

where {...>o is an expectation value in the nuclear ground state.The optical potential U
is defined in the usual manner by casting (5.16) into the form

o~ vy (i) (5.17)
Because of its dependence on o, U is an operator affecting the internal motion. If we ignore
inter-nucleon correlations, a comparison of (5.16) and (5.17) yields [12]
UGz; ) = UV (Bz; ) +UP(dz; o),
UGz D) = [ d*yn(72) B +5 + O +1,+5- 3 D1, (5.18)
Uz 9) = — [ Ay, B+5+ 3 DB +5- 30, (5.19)

where n(yz) is the nuclear density.
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Bell’s point is then the following: in a large slab of nuclear matter n is effectively
constant, and then the average (5.18) over the positions of the scatterers gives

UNbz; p)

n(bz) ¥ { d*yy(y) =

I

31(b2) Y oox (5.20)

which is not a function of 5, and therefore unable to induce transitions. This is
then the first term of (5.8). What Bell has therefore shown is that the average of the short-
-time wave function over the transverse positions of many scatterers gives the same
result as the forward amplitude at asymptotic times in scattering from one scatterer’
and therefore contains the singular piece d(m—m’'), with the coefficient as given in (5.8).

Taking these considerations seriously would then lead us to choose the form (5.8),
where ¥V is smooth and, because of (5.19), positive at m = mi’. If N is the number of consti-
tuents, and o = 41 oy, we would therefore replace (5.3) by:

(Ae—aN)p,(m) = — [ V(m, m)yp,(m)dm'.

Van Hove’s simplifying assumption that V is merely a function of |m—m’| then yields
the spectrum

i, = No— | e™y(m)dm, (5.21)

and one would expect A — No for n - .

Instead of the spectrum shown in Fig. 3a, one would therefore have the situation
depicted in Fig. 3b. Thus the modes that have the more rapid mass variation suffer greater
absorption, and instead of the narrowing of the mass distributions found by Van Hove,
one would find a broadening, as in normal collision broadening. Even with a spectrum of
eigenabsorptivities as shown in Fig. 3b there will be a depression of the apparent nuclear
cross-section, because the mean absorptivity is lower than Nx — e. g., lower than o,y +0,y
if one thinks of the A, as a mp state®.

The foregoing discussion only applies to a slab of nuclear matter, for U'"), Eq. (5.18),
is only independent of the internal co-ordinates of the composite if the density is a constant.

5 What is being said here is, of course, “well known": the forward amplitude appears because of
the spatial average. What is perhaps not so “well known” is the role of the time scales, especially when
the projectile has an internal structure that can be excited.

¢ The (7, o) model, treated as above, is just the one of Goldhaber et al. [10] in the first investigation
of this problem. It will be recalled that they showed that o4,y is then only ~ 15 % smaller than (ox+ 0gn).
Our investigation of such models has a different purpose, however: not to compute o4,x, but to understand
the mass structure of the optical potential.
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In a real nucleus the situation is therefore less simple, but more interesting. In the
interior, where the density varies slowly in comparison to the elementary profiles 7y,
the & function will appear in U, but in the surface region this will not be so because the
surface thickness is not large compared to elementary interaction ranges. Furthermore,
in a production process the surface is emphasized because the wave functions of the incident
and produced particles are strongly attenuated. As a consequence, the singular 6 term may
not play so prominent a role.

As we have just seen, in these simple models the averaging over the configuration of
the scatterers is of paramount importance in determining the structure of re-scattering
amplitudes. In a process where only a small subspace of all these configurations is signifi-
cant, the short-time transition matrix will determine the nuclear amplitude. This is the
case in the important example of coherent production from deuterium in the angular
range where double scattering dominates [6]. For this process the two nucleons must be
roughly aligned with the incident direction, and there will therefore be no 6 term in the
scattering amplitude of the produced state from the second nucleon. This should serve as
a warning that such deuterium measurements are not trivially related to production in
complex nuclei.

“Qur discussion has been marked by illogical jumps from a model with a discrete
spectrum of internal excitations to the continuous mass spectrum seen in nature. The
development from (5.16) onwards shows that this is quite unnecessary, because there the
nature of the internal state y, plays a totally passive role. All that is necessary is that the
collision be impulsive, i. e., that the configurations of the two systems are momentarily
frozen. Indeed, we can see that a more realistic model of a (m & A4,)-type process can be

Y

G

Fig. 4. Graphs that have no counterpart in the non-relativistic models, or their naive relativistic generaliza-
tions. The lines with arrows are constituents of the dissociating systems, and the shaded circles represent
an absorptive interaction with nucleons

constructed if one chooses an interaction such that the composite has one bound state y,,
and a broad resonance not too far above the dissociation threshold. If x, is then replaced
by ¥, in (5.16), that equation will describe both elastic “pion” scattering, and “4;” pro-
duction.
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What still remains unclear is whether such naive models can do justice to the real
situation, where the internal dynamics of the dissociating system is also relativistics.
What is clear is that nothing essentially different will emerge if the composite is treated
by standard parton theory methods [i4]. But it could be that diagrams that lack a non-
relativistic analogue are of crucial importance (see Fig. 4), as is supposedly the case in
diffraction scattering [15]. If that is so our naive models will not have done justice to
the situation, and Van Hove’s original argument for a smooth optical potential matrix
could well be vindicated.

6. Conclusions

Despite all the confusion that reigns at present, it is clear that by studying diffractive
production in nuclei and in deuterium, we may obtain some insight into the short-time
behaviour of hadronic systems, an insight that can only be gleaned by highly indirect
considerations from the § matrix elements measured in conventional two-body collisions.
Whether this information will actually be interesting, or merely complicated like the
reactions between organic molecules, is of course another matter.

It is also evident that nuclear production experiments will be of considerable impor-
tance if diffraction dissociation is a quantitatively significant feature of high energy multiple
production.

This article could not have been prepared without the collaboration of several of my
colleagues at CERN. I have benefited from a number of discussions with J.S. Bell and
L. Van Hove that greatly clarified my understanding of the problems treated in Section
5. Some of the derivations of Sections 2—4 were developed in conversations with
O. Kofoed-Hansen, and those of Section 5 in collaboration with C. Schmid and
W. Wetzel.
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