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Two important aspects of the isospin analysis of hadronic diffractive production
processes are discussed. They are 1) cross-channel isospin representation, and 2) isospin
analysis of “integrated cross-sections™.

Examples are taken from single pion producticn in 7N and NN collisions, and graphical
illustration of the results are presented.

1. Introduction

Isospin symmetry is one of the best established properties of strong interactions of
particles, and its usefulness in analyzing low-energy hadron interactions is very well
known. Its application to exclusive experiments of high energy hadronic production proces-
ses is, however, rather limited in practice. The reason is simple: for describing complicated
processes one needs many isospin amplitudes, while the number of observable channels
(of different charge combinations) remains small since in the usual hydrogen bubble
chamber experiments it is difficult to identify final states involving two or more stable
or semi-stable neutral particles?.

Nevertheless, isospin analysis can be still utilized, as we shall see, in simpler cases of
production processes and particularly for diffractive production, where the number of final
particles is fairly small. In this lecture we should like to discuss two important points we
have to face in practice when we make such an analysis. They are 1) cross-channel isospin
representation and 2) isospin analysis of “integrated cross-sections”. By the word “in-

* Address: The Niels Bohr Institute, University of Copenhagen, Copenhagen @, Blegdamsvej 17,
Denmark.

L Application of isospin symmetry to the high energy inclusive cross-sections is more straightforward
owing to the generalized optical theorem. See for instance, Chan H. M. et al., Phys. Rev. Letters, 26, 672
(1971); R. N. Cahn, M. B. Einhorn, Phys. Rev., D4, 3337 (1971).

2 One neutral particle can be identified by energy-momentum balance.
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tegrated cross-sections” we mean cross-sections which are summed and/or averaged over
helicities and integrated over a certain region of phase space.

We shall illustrate these points taking specific examples of single pion production in
pion-nucleon and nucleon-nucleon collisions, because in these cases experimental data are
already available. But fhe arguments are, of course, of more general validity. (General for-
mulas can be found in Ref. [9].)

2. Cross-channel isospin analysis

One of the main interests in analyzing production processes is to find out the nature of
exchange mechanism. In the diffractive production, in particular, we should like to verify
that the “exchanged object” carries the vacuum quantum numbers. Thus the isospin
analysis should be designed so as to meet this requirement.

2.1. A preliminary example: single pion production in n"p collision

Analysis of single pion production in n¥p collision at 8 and 16 GeV/c has been carried
out by Aachen-Berlin~-Bonn-CERN-Cracow collaboration [1].

‘In the final state there are one nucleon and two pions, and the latter can be distin-
guished as the fast pion 7, and the slow pion =, by the longitudinal momenta, p, ; > p;,,
the direction of incident pion being taken to be positive. Thus one may regard the reaction
primarily due to the peripheral production schematized in Fig. 2.1.

-
Fig. 2.1
Then we have three dilferent charge combinations.
n*p — nf(pny) (2.1a)
- n7(nn]) (2.1b)
- 7y(pr) @2.1¢)

The (Nr,) system in the final state can have isospin I = 1/2 or I = 3/2. (In general it
is a linear combination of I = 1/2and I = 3/2.) Since the slow pion is more or less accom-
panying the nucleon, it is reasonable to specify two production amplitudes, M., and M,
as those which give rise I = 1/2 and I = 3/2 states of (Nn,) system, respectively3. Then

3 Of course, M, and Ms,, are functions of initial and final momenta and helicities.
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it is straightforward to find the relevant Clebsch-Gordan coefficients and obtain the follow-
ing amplitudes®.

T, = T(z"p - n7(pn,)) =

! 2M 2.2
1-55 ('a)

IR

T,=Tn p - nj(nn))) =

V2 V2
NVt (2.2b)
Ty = T(z"p > nj(pn)) =
/3
= \V—/g M, (2.2¢)

Here the normalization 1s 10 certain extent arbitrary, and we have chosen it so that
s 2
v 2, .2
YT = MR+ MR (2.3)
i=1
In practice one measures cross-sections averaged and summed over spin states and
integrated over a certain region of phase space®. Thus one gets “integrated cross-sections”
—_ + + (]
6y, = o(n p - ny(pny)) =

=1fdiM P>+ & [ doiMy® +

4 *
+ 3—\7—5 fdr Re (M M}) (2.42)

o, =o(n*p— nj(nn))) =

=Z{diM*+ F [diM, P —

4 .
SENE f dz Re (MiM)) (2.4b)
03 = o(n"p— alpn}) =3[ diiM,)? (2.40)

where the symbol jdr represents sum and average over spin states and integration over
phase space.

4 These relations are always valid as one way of specifying isospin amplitudes, but the amplitudes M /2
and M), get direct physical significance only when the nucleon and the slow pion in the final state form
a physical (i.e., not just a kinematical) subsystem as in Fig. 2.1.

3 The distinction between the fast and slow pions must be maintained throughout integration procedure,
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At 16 GeV/e, for instance, the ABBCC collaboration [1] has got

o, = 0.30+0.03 mb
0y = 0.31+0.03 mb (2.5)
05 = 0.1140.02 mb

from which follow, solving (2.4)
§ dt|M4i* = 0.54£0.05 mb
jdtiM;)* = 0.18+0.03 mb
| dt Re (M{M,) = 0.1240.04 mb. (2.6)

What can we learn from these results concerning the exchange mechanism? If the
reaction is taking place only through I' = 0 exchange®, there will be no 1 = 3/2 state for
the (Nng) system, and the ratio ¢,:0,:6; will be 1:2:0, as pointed out by Saiz [2].
But the inverse is not always true. Even if we had verified that ¢,:06,:05 = 1:2:0
and consequently _[]Mg,zlzdr = _\'Re (Mf;zMJ,Z) dt = 0, still we could not conclude that
the non-vanishing My, is due to the I’ = 0 exchange only, since I' = 1 exchange can
as well lead to formation of I =% state of (N7,) system. (Thus one has to make recourse
to other considerations such as energy-dependence of these cross-sections in order to
argue that _[\Mx;z{za’r is mainly due to I’ = 0 exchange {1].)

2.2. Combined analysis of ntp and =np collisions

To proceed further in isospin analysis and pin down the contribution of I' = 0 ex-
change mechanism, we nced obviously some more information. This is supplied by studying
the reaction

nTp - n(Nny) 2.7

at the same energy and at the same region of phase space. There are four observable
channels of different charge combination, namely

np ~ g (pny) (2.7a)
- n;(nn)) (2.7b)
- ny(prs) (2.7¢)
- 7} (nn]) (2.7d)

¢ Hereafter we denote the isospin of the exchanged object by I’ to make clear distinction from that
of (Nm) system.
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and one channel which is not detectable in the conventional hydrogen bubble chamber
experiment

np-— rc?(nnf). (2.7¢)

Out of these, the reaction (2.4d) is a double charge exchange process and they are
found to be very rare, so that we are justified to neglect contributions from the I' = 2
exchange mechanism. Then the remaining possibilities ate I’ = 0 and I’ = 1 exchange,
as in the case of nfp collision.

Let us now compare, for example, (2.1a) and (2.7a). As is seen in Fig, 2.2, the only
difference lies in the upper vertex, where the incident and the fast pion is

T T ™
I
| 1
1 1
e ”5”_»»:: p ' /b’g:; p
P 0 p 24
S

f21c) (27a)

Fig. 2.2

either 7+ or n—. If an “‘object”” of I’ = 0 is being exchanged the upper vertices in the two
cases will be exactly the same, but if it is an “‘object” of I'’=1 that is exchanged —one
can imagine, if one likes, a g®-meson in the cross-channel — the couplings in the upper
vertices have the same magnitude but the opposite sign because of the isovector property.
Therefore the amplitudes for (2.1a) and (2.7a) should have the following form

T(n*p - nf(pn) = aM"=°+bM" "1, (2.8)
S
T(n"p - 77 (pn])) = aM"~°—pM"~! 2.9)

where M"" denotes the amplitude due to I’ exchange. Thus we shall be able to separate
contributions from I’ = 0 and I’ = 1 exchange mechanism by comparing n=p collisions.

Once we have recognized this possibility, we can proceed more systematically [3].
First of all we may examine how many independent isospin amplitudes exist in the re-
action

7N — nNm. (2.10)

As is well known, the initial state has 7= 1/2, I = 3/2, while the final state has two kinds
of 1 =1/2, two kinds of I = 3/2, and one I = 5/2, since

91/2 ® @1 ® 91 = (@1/2 @ @3/2) ® @1 - (@1/2 @ @3/2) @ (@’/2 @ @3/2 @ @5/2).

Consequently we have 4 independent isospin amplitudes.

7 Here and in the following such an “object” need not be a definite particle or Regge pole.
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As a convenient choice® for our problem we can specify these isospin
amplitudes by the isospin I of the (Nr) system and the isospin I’ of the
exchanged ““object”™ [4). Then the four amplitudes are labelled as follows

i’
| N )
N/v/ﬁ::\: i
WS
Fig. 2.3

MI=0 I'=1 pgr=t =2
113M} =3 :—g,M

As we have mentioned before, the last one (I’ = 2) can be neglected since in our problem
its contiibution is very small.

Now we see that we can measure altogether six-nonvanishing cross-sections (spin-
-averaged and integrated over a region of phase space) for (2.1a), (2.1b), (2.1c), (2.7a),
(2.7b), (2.7¢) and they can be expressed as linear functions of six quantities

fIM{Z0dx, § (M2 %dr, § lM’ T3 %,
fRe (M{Z0 - MiZ)dr, [Re (M 20 M{Z )de
fRe (M2} - MIZNdr. Q.11

To be more explicit, we get

o, = o(n*p > nf(pny)) = gﬂ\/g M)~ -\/LQM;—\/Q Mj zdt (2.12a)
o, =0o(n’p— nj(nn)) = 23 2\/3 Mg—M;+M§|2dr, (2.12b)

o3 = a(np - 1N pn))) = 5 [ IM}i%dx, (2.12¢)

0, = o(n"p - n;(pnd)) = %j JIM+ ;/1—2 M}+/2 M} Zdr (2.13a)
o5 =o(n p—ny(nn))) = § {16 MJ+M}—M;|dr, (2.13b)

06 = o(n " p - n(pn])) = éf JV2Mi+ 715 M} zdr. (2.13¢)

Further, the undetected cross-section for the channel (2.7¢) is also expressed as

0, = o(n"p > n)(nnd)) = § [ M}~ M}i’dr. (2.13d)

8 There are of course other ways of specifying isospin amplitudes. All of them are related linearly to
each other. A more conventional way is the direct channel representation, see Ref. [3]. A double peripheral
representation is given in Ref. [8-9]. See also Section 4.



795

The numerical coefficients in (2.12), (2.13) are appropriate products of Clebsch-Gordan
coefficients and can be obtained by the standard rules of composition and decomposition
of angular momenta. The normalization has been chosen such that

7

. 21 +1 ,

2 = g | 1MV 3dr, 2.14
a} 2I,+1 J“ 11 at ( )

j=1 Lr

in distinction from the previous one, (2.3).
The ABBC-collaboration [5] has obtained the following values from the data of
n¥p — nNw at 16 GeVJe.

§IM32dr = 448429 pb
fIM?dt = 50+£59 ° pb
f IM}i*dt = 108+ 14pb
f Re (MIM}M)dr = 70+33 pb
fRe (M3M})dr = 8+23 b
fRe (M M})dr = 66156 ° pb. (2.15)

Thus our expectation is borne out: The I' = 0 exchange amplitude dominates in the
single pion production — i. e. the latter has mainly a diffractive character.

T p—eT(NT) AT 16 Gev/e
-| LB | |,4I.ﬁ LA B LN | -l LA ) | AL TTrTT lu_l TT1 ' LLEL L L l—
1520 B 1 2 N
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e
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§ [ ] SRREE PPN PRI H++- & ——t b ke
8 -::::gsa%:::uz:::f : -+ -

~ K + LR 2 ] LI 2 4 $ 7 % 1 L3 Ll
g\ :d)Re(MJ’ZM,W*)': e)Re(W”z /2*):_ #) Re Mr/z 3/2) ]
< of ¥ - |
3 . +4 +4 .
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(NTT) Effective mass GeV

Fig. 2.4

? These numbers have been slightly changed, well within the errors, from the original text. See
a comment on this point in Section 4.
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A more detailed plot of these quantities as functions of (Nm,) effective mass has
been given by these authors. See Fig. 2.4. An interesting feature is the presence of a broad
bump around 1300 MeV in the I' = O exchange contribution.

The same type of experiment is in progress by the same experimental group [6]
on the ntp — nNw process at 8 GeV/c. Then we shall be able to see clearly how the
contributions from different isospin exchange mechanism depend on energy.

3. Isospin analysis of “‘integrated cross-sections™

3.1. An example: NN —» NNn. Isospin structure underdetermined
Let us now discuss pion production in NN collision'®

NN, —» N(aN}). 3.1)

The argument goes very much in the same way, but a new type of problem appears in
this case, which will be studied in this section.

Firstly, from isospin analysis of single pion production in p--p collision alone one
can conclude that (nN,) system is produced predominantly in I = % state [7], but one
cannot single out the contribution of I’ = 0 exchange from data at a definite energy.
(The situation is analcgous to the case of 7*p collision mentioned in 2.1.) Thus one has to
compare pion production from p—p and p—n collisions at the same energy and at the
same region of phase space in order to carry out a more detailed isospin analysis and
clarify the nature of the exchange mechanism.

Fig. 3.1

In contrast to the case of nN collisions, there can be no I’ = 2 exchange processes
(¢f. Fig. 3.1), so that we need not assume its absence. With the similar argument as in
Section 2, we can easily verify that for the reaction (3.1) three isospin amplitudes are
necessary and sufficient. For our purpose it is convenient to choose M3, M}, M} just
in the same way as in np collisions. On the other hand, the number of channels with iden-
tifiable final states is only 5, 7. e.

p1p2 — pi(n°p3) (3.1a)
pip2 — Pi(nny) (3.1b)
PP "1(7'5+P’2) (3.1¢)

10 The pion in the final state can be associated with either of the nucleons. We denote the nucleon
accompanying the pion by N';.
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pihy — pi(n” ph) G.1d)
nip, = py(n” p3). (3.1¢)

Suppose, for a moment, that we could make a precisely differential measurement of
cross-section for an infinitesimal region of phase space and for a definite set of helicity
states. Then we should get relations of the following form

do; . e -
d—EJ = la;MPZ +bMIS) + e, MEZH2. (3.2)

i=1,23475

where a;, b;, c; are known real coefficients. (See Table 3.1 below.) Thus we should have to
determine 3 complex numbers (Mg, Mi and M;) in terms of 5 observed differential
cross-sections. Since the overall phase has no significance, we should have in fact only
5 unknown real variables (3 moduli and 2 relative phases) and definite solutions would be
obtained'. (In general there would be two sets of solutions.)

In reality, however, it is very difficult to make such differential measurements. Usually
one has to average and sum with respect to helicity states and integrate over a region of
phase space, and by this summation and integration the phase relations (which are non-
-linear ones) are spoiled. Consequently, we need 6 real integrated quantities listed in (2.11)
in order to describe the 5 integrated cross-sections. Thus our problem is underdeter-
mined in the case of N— N collisions.

3.2. Inequalities as remains of phase relations

We shall show in the following that the situation is not so bad as it looks at first sight.
The constraints due to phase relations (which are non-linear in differential cross-sections)
are invalidated by integration but they are not completely lost; they remain, so to speak,
in weaker forms of inequalities, as we shall see, and the latter turn out often to be quite
effective in restricting values of various isospin contributions [8, 9].

For the puipose of finding out such inequalities, it is convenient to replace the phase
space integration (and helicity summation) by a summation over a large number, W say,
of points in the phase space. Then we can write, for any isospin amplitudes M an M’,

w
JiMPdr = 3 4r{{Re M)} +{Im M()}’] (3.3)
w
{Re (M'M')dr = Y, 4t,[Re M(j) - Re M'(j)+Im M(j) - Im M'(j)] (X))
j=1

1! In the case of #N collisions, the non-realistic assumption of precisely differential measurements
of 6 cross-sections would lead, to an overdetermination of 3 moduli and 2 relative phases, thus affording
a check of isospin invariance.



798

where M(j), M'(j) are the values of M, M’ at the point j and 47; is the phase space element
at that point.

1t is thus natural to introduce three 2W-dimensional real vectors Mg, M; and Mglr
with the following components,

MY = (V 41, Re MY(1), V41, Im MY (1), V41, Re ME(2),
VA, Im MYQQ), ...,
Va1, Re MY(W), VA1, Im MY(W)), (3.5)
etfc., because we then get
§ IM32dt = (M9)?, etc., (3.6)
and
f Re (MIM)dt = (M} - M}), etc. (3.7

Notice that, although the vectors M| are 2W-dimensional, we have in our problem to do
with only three vectors so that we can limit ourselves to the subspace spanned by them.
The dimension of this subspace is, of course, at most three.

It is now straightforward to apply the well worked out mathematical scheme of
linear vector space [10]. A set of Gram determinants constructed from these 6 scalar
products must be non-negative. That is to say

(M))* >0, (3.8a)
M)? (M- M)
>0,
(M3 - M) (My)? (3.8b)
M7 (MY MY (M3 M)
(MM (MY (MM =0
(M- MY (ML-MY (MY (3.8¢)

The first one is trivial; the second and the third relations are the well-known Schwarz
inequality and its generalization. It can be proved [10] that the set (3.8) is necessary and
sufficient’? and includes no redundancy. (Other sets of inequalities obtained by exchanging
the roles of M| are equivalent to this set.)

12 That is to say, if a given set of 6 numbers satisfy the inequalities (3.8), one can construct three
vectors in such a way that their 6 scalar products are equal to the given 6 numbers, respectively.
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Geometrical meaning of these inequalities is clear: The length of the segment My,
the area of the triangle formed by Mg and M, the volume of the tetrahedron spanned by
Mg, M; and M ; must be real. It can be also verified that (3.8¢c) is reduced to the phase
relation of Mg, M; and M% when the equality sign holds.

3.3. Analysis of experimental data

We are now ready to analyse the experimental data given in Table 3.2. At 7.0 GeV/¢
Yekutieli et al. [11] have obtained 5 cross-sections ¢, 05, .... 65. If, for instance, we use
o (Which is not observed) in addition to them, we can solve the linear equation given

TABLE 3.1
Expressions for cross-sections NN — NaN
Observable channels
( 1(n°pl) M! ! Mt 2 M} b
nl_.n'plpz—-bpn ) = I, = — = oy — ———= M3, |
1 \/ 2 3 \/3 2 3 \/3 2 1
? ’ \/—i / 2
02 = 0(pipz = pyim)) = = Ml/z 3 \/3 T 3—\/'<M3 ,
I [ 1\/ 2 |2
63 = olpip; = nytp;,) = dr /3 M3/z
i 5
r i /5 I 12
2 i2 /2
0y = alpin, = pipl) = | dt ‘ 1/1 M+ l/_ M, - N = M§;2}
J 143 33 343 ;
~ g - t2
22 2 {
o5 = olnips — pi(apl)) = | dr ~1/~: Mi, + \/—_ M;E/zi
J 133 W3
Unobservabie channels
POy [ ! 0 1 1 2 1 !
06 = o(pny — py(n) = dr | —= My, + ——= Mi;,+ -~ - M3,
J V3 33 33
67 = olnpy, - pya®ny)y = | dv | —= Mi,, — M;'o/zl
| R EN RN
TABLE 3.2

Experimental data: NN — NaN

7.0 GeV/c [11] 28.5 GeV/e [12-13]

l
|
i |
0, \ 0.95+0.16 mb ‘ 13

g2 1.35+0.30 mb 0.70+£0.05 mb
o3 1.20+0.25 mb 0.05+£0.01 mb
A 0.78+0.08 mb 0.40+0.02 mb
Os i 0.33+0.03 mb : 0.05£0.0t mb

13 No experimental data available.
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in Table 3.1 and express the six scalar products (M3)?, ..., (M3 - Mj). .... as linear combi-
nations of o, ..., 65 and ¢¢. Since o4, ..., 05 are known, they are in fact functions of g¢
only. Then we insert them into (3.8) and get inequalities for o6. In this way upper and lower
bounds of os are determined, and consequently the upper and lower bounds of
(MDY, ... (My - My) are also found.

The authors of Ref. [11] have used (M, - M) as the parameter, and expressed the re-
maining five scalar products as functions of ¢, ... 65 and (M,f . M,}l). Then inserting them
into (3.8), the upper and lower bounds for (Mf . M;) is obtained, and consequently, the
bounds of other scalar products are also determined. Of course this procedure is completely
equivalent to the above mentioned one. The results are shown in Figs 3.2 and 3.3.

Further, at 28.5 GeV/c there are data [12-13] for o,, 63, 64 and o5. One can still

| (a) c I et e
" ‘ ol ®) PrPz—=ps(ny") Stot
10
o5k D .
00 R
Y a———
~-10
a ' K ' } + ¢
S (¢) piny —=(psmip, (d) p,n,—>py(p, ) A
5,
05k tot
C. £
00 %:1
B !
00 ] F
-05F 7 -
D
i F 1 | 1 { \
-0.9 -0.8 -0.7 -09 -0.8 -07
1 0
M2 Miyz mb
Fig. 3.2
( )77 T T B T (c}l T L] L9 )
a —nn
! T
] My2 | o3t My, 5% |
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Fig. 3.3
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use the inequalities (3.8) to estimate the upper and lower values of ¢, and o¢, and then
evaluate the bounds of (Mf)z, s (M%1 . %1). This has been done by Yekutieli ef al. and
the comparison with the data of 7 GeV indicate very clearly that (My)? decreases very
slowly, while (M,}l)2 which is very appreciable at 7.0 GeV/c, decreases very rapidly.
See Table 3.3.

TABLE 3.3
Upper and lower bounds for unknown quantities at 28.5 GeVjc (Ref. [11])
Min. Max.
o3 0.38 mb 0.73 mb
(M?),)? 0.75 mb 0.8 mb
(M1,,)? 0.125 mb 0.30 mb
w3,y 0.075 mb 0.075 mb
™M, - M) —0.35 mb —0.10 mb
M3, - Mip) —0.02 mb 0.24 mb
w1, M3,) —0.15 mb 0.03 mb

4. Graphical illustration of three amplitude cases

In the foregoing section we have seen that the integrated cross-sections for various
charge channels of the reaction NN — NnN can be described in terms of six scalar products
(M- M) of three vectors!*. The same applies, of course, to the reaction nN — nN7 as
far as the I’ = 2 exchange mechanism can be neglected. Since these vectors span a three-
-dimensional Euclidean space, it is possible to visualize the relations by means of a tetra-
hedron or pyramid [8-9].

mor N1 \/Wf o N1’
1
| '
I,I\L,wmfrrs ort
|2

N Oer/\\N/orK}

Fig. 4.1

For technical reasons (i. e., simplicity of construction of the figures) we use this time
a purely cross-channel representation (or a double peripheral representation), where isospin
amplitudes are specified by isospin I, and I, of exchanged “objects”. (See Fig. 4.1.)
We denote three isospin amplitudes in this representation!’ by P, Q and R as defined by
Table 4.1.

14 Generally, when differential cross-sections of a certain reaction are described by 7 isospin ampli-
wudes, the integrated cross-sections are expressed in terms of dn(n+1) scalar products of n vecters.

15 Qur amplitudes in Sections 2 and 3 are related to the new ones by Mi’,2 = \/ 3/—2 P, M }/2 = Q+2R,
M3, = Q—R in the case of aN, and MY, = \/3/2P, Ml,, = \/3]2(Q+2R), M}, = \/3/2(Q—R)in the
case of NN.
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TABLE 4.1
111 I'z
P 0 1
Q 1 0
R { 1

Then we define three vectors P, @ and R which are related to P, @, and R just in the
same way as My, M, and M} are related to M, M} and M}, explained in Section 3. As
is summarized in Table 4.2, the integrated cross-sections for aN — nNw and NN — NnN

TABLE 4.2
Double peripheral representation
NN — NaN N — aNr

A* = [P+ Q)? 20(pyn, — piny) 20(np — n;p:zg)

B* = [P—QFf 20(p\p; — pi7°p;) 20(*p — 7fpny)

C: = |Q+R]? olnypz > pywp) 20(np — aypas)

D* = |Q—R? o(pipz — njz'py) 20(tp — :zofprlrf)

E* = [P+R|? o(pin> — Ppy) (@ p — npnag)

F* = |P—R[* o(p\pz — platnl) o(wtp - winmd)

are expressed in terms of the square of sum and difference of three pairs from P, Q, R,
and it is quite straightforward to construct a pyramid spanned by these vectors. See Fig. 4.2,

Fig. 4.2

In the case of N collision, all the sides 4, B, C, D, E, F are given, so that the pyramid
is fixed (within the experimental errors, of course). See Fig. 4.3. The fact that a pyramid
can actually be constructed shows that the inequalities (3.8) are satisfied and the require-
ment of isospin symmetry is fulfilled. Indeed it is for this purpose that we have slightly mod-
ified the values (well within the experimental errors) for [|M}[?dr and | Re (M M%) de.
In this case the third inequality (3.8¢c) is almost an equality and, correspondingly, the
pyramid of Fig. 4.3 is nearly a planar figure (R = 0), suggesting an approximate linear
dependence of M} and M].
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In the case of NN collision at 7.0 GeV/c, the values of B,C, D,E, F, are available,
but not that of 4. Thus the pyramid is not uniquely determined; it can take any shape

Fig. 4.3

between two extreme cases where two triangles BCE and BDF become coplanar. See
Fig. 4.4.

Fig. 4.4

Finally in the case of NN collision at 28.5 GeV, only C, D, E, F are known, and these
connected 4 sides can be located in any shape between extreme cases. Nevertheless one
can still make a fairly good determination of upper and lower bounds of B and then
those of |P1?, {Qi* etc., owing to the smallness of C and D?*S.

As is seen from these examples, the graphical method gives a very simpie picture and
interpretation of the isospin relations, in particular the inequalities, but its application
is usually limited to the cases of 2 or 3 isospin amplitudes, because of our poor intuition.

This lecture is based on a series of works carried out in collaboration with R. Mgl-
lerud, L. Veje, J. Bjorneboe in Copenhagen and N. Tornqvist in Helsinki, to whom I am
grateful. In particular I owe Jens Bjerneboe for continual discussions on this subject and
comments on this lecture note. I thank also Dr W. Kittel and his colleagues in ABBC

18 This is very encouraging for further application of isospin analysis to very high energy reactions,
where similar situations are expected.
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collaboration and Professor G. Yekutieli and his colleagues in Rehovot for informing
me of their results prior to publication.

Finally, the hospitality of Professor E. Obryk and the staff of the Cracow School of
Theoretical Physics is deeply acknowledged.
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ADDENDUM

After these lecture notes were prepared, the following works on the isospin analysis
of production experiments became available.

J. A. Charlesworth, N. Intizar, W. W. Neale and J. G. Rushbrooke, Isospin Analysis
of Exchange Mechanisms and (XK)-Systems in NN — (ZK)N at 6 GeV]e, (Cavendish
report HEP-72-4). Isospin Analysis of Exchange Mechanims in NN — (AK)N at
6 GeVle, (Cavendish report HEP-72-7).

In the above works the methods of analysis described in these lectures are applied
and it is concluded that at ~ 6 GeV/c:

1) In NN - (XK)N the amplitude for producing I = 3/2 (ZK)-system by I' =1
exchange is the largest, the mass distribution of (£K) showing evidence for 4(1950) pro-
duction, while the I’ = 0 exchange is only ~ 209 of the total reaction amplitude.

2) In NN = (AK)N, I' = 0 exchange accounts for ~ 409, of the total reaction
amplitude.

3) A Deck model can explain the shape of I’ = 0 exchange part of the combined
(ZK); and (AK) mass spectrum.

Further, a work on the exchange isospin analysis of K—p + KrN and K-p —
K* (890) =N at 10 GeV/c by Aachen—Berlin-CERN-London (I. C.)-Vienna Collaboration
is near completion. (W. Kittel, private communication.)
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