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The Ascoli method for the partial wave analysis of the 3z system produced diffractively
is discussed. The tests of the factorization assumption are proposed. It seems that the most
efficient test is to compare the density matrix elements for events in various regions of the
Dalitz plot.

1. Introduction

Recently some experimental groups performed the partial wave analysis of diffrac-
tively produced systems. To discuss the problems encountered in such an analysis I shall
consider the method proposed by Ascoli and described in the Ph. D. thesis by D. V.
Brockway (Univ. of Illinois, 1970). It was applied, for instance, to analyse the process
np - wian~p at 5and 7.5 GeV/c. This is a more complicated process than e. g. pp—nnp,
as the symmetrization over the identical pions in the final state is necessary. In the follow-
ing, I shall ignore this symmetrization as it is irrelevant for further discussion.

It was assumed that the process np — ntn~np goes mainly through o7 with some
admixture of en. This simplifies the analysis considerably. Then the main purpose is to
determine the spin-parity contents of the object A (see Fig. 1).
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Fig. 1. Schematic representation of the process
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There are three sets of variables used to describe such a process:

(i) production process variables — CM energy squared W2, momentum transfer squared
¢ and the three pion effective mass M;,.. The dependence on these variables is in the density
matrix ouu(A) of the object A. This matrix describes the mixture of several objects with
various spins and parities, including their interference. It carries the subscripts which are
the projections of the total angular momentum of A on the Gottfried-Jackson axis.

(if) the Dalitz plot variables s,, 5. The Dalitz plot amplitude G depends on these

variables.
(iii) the three-pion decay angles a, #, y which are in the rotation functions 2(z, B, 7).

2. Decay amplitude

As | already mentioned, the production process is described by the density matrix
oyy(A). This is a fairly complicated object and is unknown in the analysis.

Still more complicated is the decay amplitude 9R. It may be represented as the
product of three functions (some normalization constants have been dropped here)

Wy ~ ¥ Cis vz G251, 5Pl B, ). (1)
Here J and P is the spin and parity of the components of A, and Cjs is a coefficient which
determines the ern/gn percentage and depends also on the relative orbital momentum /
of the dipion and the third pion, and on the spin s of the dipion. Further, G(s,, s,) is the
Dalitz plot amplitude. It depends on v, the projection of J on an axis internal to the 3n
system, for instance on the momentum p,‘3 of n*. Another possible choice is the normal
to the 37 decay plane. Finally, the rotation matrix & connects the 3z internal reference
frame (the z-axis being }5,,3 and the J projection on it v) with an external reference frame
(the z-axis being in this case the Gottfried-Jackson axis with J projection M).

Now it is necessary to specify the Dalitz plot amplitude. Its s, and s, dependence
is easy to write down — it is just a combination of Breit-Wigner amplitudes with threshold
behaviour added. More difficult to work out is the dependence on spin variables. It is
given by the formula (again some unimportant factors are dropped)

G.:Pl Z dif('gu)dfo(/ 1)AJP1(53) 2

Here A is the dipion wave function, essentially Breit-Wigner with threshold behaviour
added. The rotation functions d are necessary to get the dependence on v, the J projec-
tion on E,J.

To explain this formula, let us start with s,, the CMS of the pions n; and 73 (of
Fig. 2). In this system, we know the projection of the dipion total angular momentum s
on the direction of relative momentum, say on p,,. It is zero, because the total spin of
the dipion is zero and its internal orbital momentum has zero projection on the relative
momentum. Starting from this piece of information we work out the dependence on v
in a few steps. First step: knowing the projection of S (always in 73 —7; CMS) on P,
we calculate its projection 1 on —E,,l using the rotation matrix d;o(y,). Here y, is the
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angle between —p, and ;,‘3- Next step is the Lorentz transformation from the dipion
CMS s, to the 3n CMS. This transformation does not change A, as this is the projection
on the direction of transformation. Finally, we rotate through 39,5, the angle between

Fig. 2. Kinematics of the 3z system in the velocity space

5«3 and E,,, in the 3n CMS to obtain v, the projection on E,W This step is done by the
rotation function di,(9;3).

The last thing to explain now in Eq. (2) is the dipion wave function A% (s,). It is
given by the formulia
Piqy

2 .
1 —ms—imgl(sy)

Aga'(s1) ~ €1, 055, 4, 2) - ©)
Here P, is the relative momentum of the dipion and #; in 37 CMS and ¢, is the relative
momentum of ny and w3 in their CMS (of Fig. 2).

The Clebsch-Gordan coefficient is used to convert from the helicity basis to the
L — S basis, where the threshold behaviour is simpler. The width I' had also the threshold
behaviour.

3. Experimental procedure

The procedure applied by Ascoli et al. may be summarized in the following points:

1. Cut off ali N*(1236). Check for bias introduced by this cutoff. N* cannot be
produced diffractively. It influences mainly the decay distribution of the object A.

2. Fit for the A density matrix ¢ and coefficients C{SP using small intervals in M,,
and a large range in 7. This is to determine the dependence on M,, and find possible
structures. Fitting is done by maximum likelihood method.

3. Fit for ¢ and C in two mass intervals with small 7 steps. The two mass intervals,
1.0-1.2 and 1.2--1.4 GeV are called the 4, and 4, mass regions.

4. Vary o meson and & meson masses and widths looking at the likelihood function.
Choose best values for ¢ and ¢ parameters.

5. Check whether the fit for p and Cis good. This is done by calculating one dimensio-
nal distributions with fitted parameters, e.g. mass distributions along bands on the Dalitz
plot, angular distributions in various mass regions.

As a result, after the parameters g and C are determined, also the distributions not
directly accessible from experimental data are calculated, like the spin-parity content as
a function of M;, or the density matrix of the 1+ component.
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4. Comments on assumptions

Egs (1)-(3) are not the most general formulae one can imagine for this process. Let
us discuss now the assumptions that were made while writing it down. These may be
divided in three groups.

({) Dalitz plot amplitude is just a combination of gzm and en.

(ii) Spin variables in the decay factorize from the spin variables in the production
(e.g. the Dalitz plot amplitude G does not depend on the Gottfried-Jackson projection M).

(iii) Continuous variables in decay factorize from the continuous variables in produc-
tion. This means that the density matrix elements g, should not depend on 3r internatl
variables (e.g. the Dalitz plot variables) and, on the other hand, the decay amplitudes
should not depend on total energy W? or momentum transfer ¢.

Assumption (i) can be checked experimentally by studying the Dalitz plot distribution
or even by performing the partial wave analysis. If porn-+er is not enough, more states
must be added or something else substituted for G. This ‘“‘something else”® may depend
on: J¥ —spin and parity of 4, I — relative orbital angular momentum of z* and the
dipion, S — total angular momentum of the dipion, and i — its projection on p,,.

Assumptions of group (i) seem to be difficult to verify. First of all, it is known that
t-channel helicity is conserved. This means that M = 0 and detecting the dependence
on M is hopeless. Another possibility is that for a pure J¥ state functions GI*' satisfy
certain parity relations. This is true, however, only if there is no interference of states
with the same J but opposite P. Usually all possible J” (up to some value of J) are assumed,
so again this feature is difficult to check.

Most promising looks assumption (ifi). It is easy to check whether g, depends on s,
or s, (it should not). In fact, to verify this it is enough to calculate the density matrix
elements ¢ for various regions on the Dalitz plot and check whether they are equal. If
at the same time coefficients C,’sP depend on sy, s, one should also get suspicious.

Finally, Cjs should not depend on the production variables W2 or ¢. This is also
not difficult to check.

To summarize, the easiest to perform seem to be the tests on factorization of continuous
variables, in particular the independence of Cis on W2, r and especially of gya(4) on 54, 55.

When preparing these lectures I profitted from the discussion with Dr G. Otter.



