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( Presented at the XII Cracow School of Theoretical Physics, Zakopane, June 8--18, 1972)

The experimental situation concerning helicity conservation in diffractive processes
is reviewed. As an introduction a short repetition of the necessary formulae of the heli-
city formalism is carried out. The tests for helicity conservation are then derived and
the corresponding experimental data are discussed. The results are the following:

s-channel helicity conservation seems to hold for elastic diffraction scattering (I include
here the photoproduction of the g-meson), but nearly all inelastic diffractive processes
show small deviations from #-chanel helicity conservation.

Introduction

Elastic scattering at high energy seems to tend to a finite cross-section and people
have tried to describe it in terms of a diffraction picture. Good and Walker {1] predicted
that the elastic diffraction scattering of a particle on a nucleon or nucleus can at high
energies produce other kinds of particle, whose production cross-section behaves in
a similar way to the elastic cross-section. This process is called diffraction dissociation
and has been found experimentally. The hadronic complea of particles produced is
expected to have the same guantum numbers as the incident dissociating particle (except
for a possible change in spin and parity), to have a narrow diffraction peak in momentum
transfer and to be produced mainly at low effective masses. People also tried to apply
the Regge picture for these processes and used Pomeron exchange for its description.
If this is correct only natural parity is exchanged. Besides the expected properties some
others seem also to be observed. One of them is known under the name “‘helicity conser-
vation”. The expressions ‘‘s-channel helicity conservation” (SCHC) and “¢-channel helicity
conservation” (TCHC) are now often used in high energy physics but the ideas behind
these words are not so new. Pokorski and Satz [2] proposed a model for diffraction
dissociation in which the Pomeron couples like a particle with spin-parity 0. This gives
just TCHC (I would like to mention that TCHC is not a new idea, since e.g. one-pion-
-exchange models haveTCHC incorpoiated).
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SCHC is also not new. The Aachen--Berlin-Bonn-Hamburg-Heidelberg-Munich
collaboration [3] studied the photoproduction of the p-meson with unpolarized photons
and found that some of the density matrix elements of the o were zero in the helicity frame
(600 = 01-1 = Re p;4 = 0), independent of the production angle of the . This is just
SCHC.

An experiment done at SLAC [4] brought more attention to the question of helicity
conservation. With linearly polarized photon beams at 2.8 and 4.7 GeVic they studied
again the photoproduction of the o-meson. Because of the linearly polarized beam they
had more quantities to test the hypothesis of helicity conservation and they found really
very good evidence of SCHC. Gilman et al. {5] proposed that SCHC might be a feature
of all diffractive reactions. There is experimental evidence that SCHC holds for high
energy nN elastic scattering [6]. The diffractive reactions, on the other side, show strong
violation of SCHC. They are also not in agreement with TCHC but this hypothesis looks
to agree much better.

In these lectures I want to talk about the experimental situation concerning the helicity
conservation: how has it been tested and what the results are.

There are 3 sections 1 want to treat
1. short repetition of the helicity formalism
2. helicity conservation for the two-body reactions:

ab - cd
3. helicity conservation for the general case:
ab - (cyc, ...) d.

1. Repetition of the helicity formalism

This is more or less a collection of all the formulae we need later on. Proofs and
phase conventions are found in Ref. [7].
i.1. One-particle states

Consider a particle with mass M and spin S. A convenient basis in the Hilbert space
for a relativistic theory is the following set of common eigenvectors

IPAM, )

where p is the momentum and A the helicity (7 - pl I:[:|, J being the angular momentum),
the projection of the angular momentum along the direction of the momentum. The
quantities M and S will be omitted from now on.

P2 = 1¢9p2> = R(%, 9, OL.(2)|0002).
The parity operation transforms
P1pAy = nexp (—inS)|—p—4),

where 7 is the intrinsic parity of the particle. The combination of parity and rotation
around the y-axis transforms

RO, 7, 0)2|pAy = (=" "*np" =1,
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pM is the momentum reflected in the x— z-plane. It is sometimes convenient to introduce
another basis given by the set of common eigenvectors

LimpA>,
j is the angular momentum and m its third component. It is
jmpiy = N, [ d cos $deDi (¢, 3, 0)ipIpl)
with
lgdpi) = ]z"; NjD;,;u‘.((Pa 3, 0)jmpi)

where N; is a convenient normalization factor and D}, is the usual rotation matrix.
The parity operation transforms

Plimpiy = n(=y " \jmp—2).

1.2. Two-particle states

Consider two particles with spins S, S, and masses M, and M,. The Hilbert space
of this system is the direct product of the Hilbert spaces of the corresponding single-
-particle states and the simplest basis is

15131,52;19 = 1;’11035222)
or, with a different parametrization,
|PpAsd;> = '9BP, ¢9p, 425>

P is the momentum of the CM and p is the relative momentum in CM. Instead of p (the
absolute value of the momentum in CM) we often use the total effective mass M of the 2

particles, which can be calculated from p and the masses of the two particles. The angular
momentum eigenstates are

J
T

. N, [ .
|\PAMDA ALY = - J d cos 9doDyy;, 1, (®, 9, 0) x
X |P, M, A,4,)
with
PeOMA A, = Y N,D, (¢, 8, OVPAMIYAL ).
JA

J and A are the total angular momentum and the helicity of the two-particle system
respectively.

The parity operation in the CM-system:

PP =0AMIYL 00> = mna(—=) "5 750P = 0AMJ)— 2, — 4.
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[.3. Multi-particle states

There is more than one way to couple three particles with masses M; and spins S,.
One possibility is to couple particles I and 2 to a system (1 2) and couple to it the third
particle. The basis in the Hilbert space is

Iﬁs (PSM’ (ﬁgM7 241, 129 2’3>

P is the CM-momentum, M¢3 effective mass and the direction of the momentum of the
system (1 2) in the CM-frame, M@J are the total are the effective mass of the system (1 2)
and the direction of the momentum of particle 1 in the (1 2) rest frame,

Ay and 4, are the helicities of particles 1 and 2 in the (1 2) rest frame and 4 the helicity
of particle 3 in the total CM-system.

It is also possible to define an angular momentum state which is related to the
momentum state

(PAMDMIA 2y, fhs) =

= N,Nj | dcos 3dg | d cos 34Dy, _; (¢, 9, 0) x

x DY _ (@ 3, 0)P, M, GIM, A4y, 43>
and
B, @8M, 3IM, iiy, 43> =
= Y N,N3D%,_, (¢ 9, 0D, _, (@, 3,0)x
JATu
X \PAMMJI)YMJhyhy, phs).

J and A are the angular momentum (spin) and helicity of the total system, J and u the
angular momentum and helicity of the system (1 2) in the CM-system. The parity operation
in the CM-system transforms

PP = 0OAMIYM Ty, pisy =
= nnana(=) "I TR TNP = OAMIYMT Ay~ A, — =43
Another possibility for coupling the three particles is the following basis
B, 2y, MK, K, A AsAs).

P is the CM-momentum, «, 8, y are the 3 Euler angles defining the orientation of the
plane of the three particles in the CM-system, M is the total effective mass, k, and k,
the effective masses of two of the three particles. A, 4,, 45 are the helicities of the three
particles in the CM-system.
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z n (normal to the
three particie plane) and
P, p; define the orientation
of the three particle
system. They are given

% ¥ by afy.

'
34

The corresponding angular momentum state is:
3 , Ny
[P, AAMMDKK k5, A4A3) = —== | do - dcos f - dy %
2

x DJx (2, B, P)IP, afyMr ky, 214505,
and

o 1 : :
IP, afyMu x5, A1Arhs) = /? N.ID‘/,iK(aﬁ'Y) X
J2n

JAK

X PAMIDKEK Ky, Ayighs).

J and A are the angular momentum (spin) and helicity of the three particle-system. K is
the component of the angular momentum along the direction which is specified by the
Euler angles (o B) (for the above definition it is the normal to the three-particle plane).

The parity operation in the CM-system (for the case where K is the angular momentum
component along the normal)

PP = 0AMI)KR Ky, AiArAs) =
3 -
= (=) H 'li(")siip = 0A(MJ)KK Ky, —Ay— Ay —43).
i=1

1t is of course also possible to couple the three particle state considered with a fourth
particle. The momentum basis is

iﬁ’ PIM, afyM ;3K Ka, AiAzAs, Ag).

@ and 9 define the direction of the system (1 2 3) with mass ¢;,3 in the CM-frame. M is
the total effective mass and x,, x, the effective masses of two of the first three particles.
a, B, y are the three Euler angles defined in the same way as before. 1,, 45, 4, are the
helicities of the particles 1, 2, 3 in the M,,; rest frame and A, the helicity of the fourth
particle in the overall CM-system.
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The relation between this state and the corresponding angular momentum state is:

P, p9M, aByM 530 K, dyis, Ag) =

| : }
= —\_/—ﬁ 5“ NJNJ123Dju"Z4((p7 ‘9’ O)Dz;(za(a! ﬂ’ ')’) X

JA  Jiz2apK
X [PAMMIM 330 153Kk 15, Adgis, the)

J and A are the angular momentum and helicity of the total system, J;,3, 1 and K the
angular momentum, helicity and component of the angular momentum along the direction

(x, B) of the system (12 3). Expanding only one state in angular momentum states we
obtain

- i
P, @3M, affyM | 53K (KA (Ayhs, Ay) = ——= E N, X
Tz, @ ByM 23k K34 Agds, Ag) \/27r Jia3
J123
puK

X D;J;}(u(“s B, )’)ﬁﬁ, @IM, J 133t KM 153K KAy Ashy, Ag).

The meaning of the symbols used is the same as just explained.

2. Helicity conservation for two-body reactions

I repeat shortly the formulae for scattering of two particles with spin into two other
particles with spin.

2.1. The reaction ab — cd

We consider this reaction in the CM-system and take the coordinate frame such
that the z-axis points in the direction of particle @ and y-axis is perpendicular to the produc-
tion plane.

The initial state is
P =0,00Mi4> =Y N,o,, 0P = 0A(MJ)A 4
JAa
the final state

P =0, ¢9MiA> = Y N,.DY, _, (@, 9,0)P = 04" (MJ)iA>
J' A
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the transition matrix-element

Froraran(ss ) = (P = 0,08M i, TP = 0, 00MA,4,> =

= 3 NyNpDy - 340, 8, 0) <P = OA'(MJI")Adgl T1hg— AMI) gy =
JJ' A’

J J
= Z d a—lblc“id(s)Alcldlalb‘
J

Parity conservation (I’ = P+TP) restricts the number of independent amplitudes:

4 __ Nalp ()5t Sa=Sa=Ss 47
AcAahagdy T —Ae—Ad=Aa—ip*
NNa

Assuming the initial state to be a mixed state described by a density matrix
i
Qlladn,du’ dp's

the joint density matrix in the final state is

Ohreicrs = 2 2 Sroiarars@huisiaioSictiaivin
Aata’ Anisp’
The density matrix of the particle ¢ (in the rest frame of ¢ with quantization axis along —p,-
the y-axis perpendicular to the production plane and the x-axis such that we obtain
a right-handed coordinate frame: the helicity system) is

Orcas = Z Q{cad,zc'ad'
Aa
It should be noted that ¢’ is not yet normalised. ¢’ has therefore to be divided by the
trace of o’. For unpolarized incident particles, the joint density matrix in the final state
fulfils, due to parity conservation, the condition [8]

))-c A"+ Aa—Ad'

— !
O S P Sy Pl Qdoagacaa

I would like to treat also the more general case where for particle ¢ not only the spin com-
ponent is unknown (therefore described by a density matrix) but also the spin-parity
value. We describe this situation with the more genetal density matrix

7 -
Obnicswic = 2 2 fowiciaiain X
Aala’ApAvp’ Ad

i *
X Qinia’so S ae dana e

Parity conservation gives for an unpolarized initial state the following condition

_ 1 (=) hetS =i
Osn—se, S0 =ie’ = OSnic,S'n'as"
o
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2.2. s-channel helicity conservation (SCHC)

Helicity conservation in the s-channel means that the scattering amplitude vanishes
when the helicities of the initial and final particles are not the same (helicity flip amplitudes
are zero)

f,acx,,aaz,, = f ;.cadz‘.zbozcz.,‘slaw
Examples:

A) Kp— Qp or ntp - Afp (0-1/2+ - 1+1/24)

Assuming an unpolarized proton target and no measurement of the final proton
polarization, the density matrix of the pseudovector particle is (in the helicity frame)

0si D) = 2 Sre2aia=02502,2.0524 X
Apdd

& -
X fruiaia=01503.030 0000 =

000
=010
000

The density matrix has to have only one non-zero element, independent of the four-
-momentum transfer £. It should be noted that this prediction also has to be true when
SCHC holds only for the mesonic system (4, = 4, = 0 but 4, # 2,).

Let us assume that instead of a pure 1*in the final state, we have a mixture of 0~
and 1+ (this can be easily generalized to all possible spin-parity states), the predicted
density matrix for this is

@o-0,0-0 0 0 0
0 0 0 0

OSnic,S'n'de" = 0 0 Q1+9,1+0 oy
0 o0 0 o0
B) vp — ¢%p (171127 = 1-1/2%)

We assume an unpolarized p target and linearly polarized photons in the initial state
and do not measure any polarization of the proton in the final state. The density matrix
for ¢° is now calculated. For linearly polarized photons the density matrix is

1 _Pe~zf¢> 3
;= 1 i = 1 1+ PiO',- .
Ciora ) (_Pez o 1 2 ( i; )

P is the absolute value of the polarization and ¢ is the angle between the photon polariza-
tion vector and the production plane [9]. If the density matrix is decomposed in terms
of the Pauli matrices o; we obtain

P, = —Pcos2d
P3 = 0.

]
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Inserting the density matrix in the formula above we obtain the following density matrix
for the o-meson in the helicity frame

*
Cias = Z Z ficma;bQzaznf;,‘.'x,,z,,';.b -

Aaka' Abda
= o+ Pk +Py0l).
SCHC means
of? 00 0 002,
. =0 00 e =0 00
0 009, 02,00

0 0 —ipl?,
Qicaer =10 00
i 00
When parity conservation and only natural parity exchange are taken into account [10],
there are further restrictions
0 0 1 2
oY = 0¥ =Reof2; = ~Im¢f2; = J.

These results should be valid independently of the four-momentum transfer ¢ from p to p.

2.3. t-channel helicity conservation (TCHC)

The two-body reaction can also bz describad by the amplitudes in the r-channel,
where these amplitudes are related to the s-channel amplitudes via the crossing matrices.
The helicity axis for the r-channel reaction

db - ca

is along —p;. Helicity conservation in the 7-channel means that the scattering amplitude
vanishes when the helicity of the corresponding particles are not the same for the z-channel
amplitudes (t-channel helicity flip amplitudes vanish). The consequences for the density
matrix for ¢ are the same as for the SCHC but now with another quantization axis, namely
along the direction of the particle a. This is just the Gottfried-Jackson system [11] (rest
frame of ¢ with z-axis along p, and y-axis perpendicular to the production plane). It
should be noted that the angle between Gottfried-Jackson and helicity frames is just the
crossing angle y and that both frames coincide in the forward direction of the two-body
process.

The density matrix of particle ¢ with spin S in the helicity frame: ¢ and in the
Gotifried-Jackson frame: 0% are related by

O = 2, ) Qi ()
(X is taken as positive for y-axis defined as
-
Y = !)_b,,pi) .

- !;bxﬁd!
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2.4. Determination of the density matrix elements

In this part I would like to repeat the procedure whereby the density matrix elements
can be determined from the decay distribution of this particle in 2 or 3 particles. Only
decays via strong interaction are considered.

2.4.1. Decay into two particles (¢ = ¢, ¢;).This decay has been treated e.g. by
Gottfried-Jackson [11]. The decay amplitude for the decay of a particle with spin § and
third component m along the z-axis into 2 particles with S| and S, 1s in the two particle
rest system

Ay (9, @) = (P =0, p8pA, A, TISm) =
= Dm}.; Az(¢’ 9 0) AtAzt

The joint density matrix for ¢; and ¢, is, assuming a density matrix for describing the
spin content of particle c,

(c) —
Qi.uz Ayt As" Z Amuig@mm mA,’).z’ -

= T),AzT;,'az' Z D;Sn.“ Az(q’ O)Qm Di. i —;.2'((#, 3, 0).

mm’

The angular distribution of particle 1 in the ¢ rest frame
W(S, p) « Z 0iana3:{® 3).
ArAa
Parity conservation for the decay process gives the relation

To —'@( poSmT

where #, #, and 5, are the intrinsic parities. This gives the well-known decay property
W(in—9,n+¢) = W, ¢).

As an example let us consider the decay distribution for 1= - 00~ (» - nn)
3 -
W(S, ¢) = n 12 cos® 8+ 0gp +5in” 9(1 — pge) —2 v 2sin §cos 3x
n

x [(Re gjo—Re g_ o) cos ¢ —(Im g, +Im g_,o) sin ¢]—
-2 sin* %(Re ¢, _, - cos 2g —Im o, _, sin 2¢)}.

Therefore for the case considered yp — 0°p (linearly polarized photons and unpolarized
proton target)

3
W, p, &) = o 2 (1—o5)+ +(3oly—1) cos* 9—
¥4

— J2 Re 0y sin 29 cos ¢ —o{* sin® 9 cos 2¢ —
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—P cos 20[of} sin® 3+ p{y) cos® 39— /2 Re () sin 28 cos p—
— %", sin? 9 cos 2¢] — P sin 2&[/2 Im {3 x
x sin 29 sin ¢ +Im {2 sin® 9 sin 2¢]}.

The density matrix elements are calculated by fitting the experimental decay distribution.

2.4.2. Decay into three particles (¢ — c¢yc,c3). This decay has been treated
by Betman and Jacob [12]. The decay amplitude for the decay of a particle with spin S
and mass M into 3 particles with spins S; in the three particle rest frame is

Apmaay2,(aByriK;) = (i) = 0, afyMx 1, 4| T|S,) =
= ZD k(o B, )Tk 111213("1"2),

where the variables are the same as explained in section 1.3. («, ) are the Euler angles
specifying the normal to the three particle plane and y is the third Euler angle which
describes the direction of particle 1. Assuming a density matrix for particle ¢ the angular
distribution of the normal and of particle 1 is

W(“ﬂ?) =N Z' Cmm’ Z Z D K(O‘ﬁ)’) X

A1d243

mK'(“ﬁ'}’) ,f drdi, Ty 0,1, Tx'zlzzza =

Dalitz plot

28
=N Y ¥ (VT ommFins, L (S—m, S'm'|jm’ —m) x
A14243 mm’KK' j=0
x{(S=K, SK'|jK' = K)D}y _px— x 2
with:

KK’ — .
Fliia, = I dr1dic; Tz, 1,1, (K1%2) Ty 2,,(K 1K ).
Dalitz plot

Parity conservation in the decay process yields

MiN2s K+S§;+5:+§
*(—) ! ¥ JTK—‘}.l"lz—lg(Klkz)

Tkaia25(K1K2) =
n and #; are the intrinsic parities of the particles considered. This gives the well-known
decay property

W((X, B’ TC+'}') = W((X, ﬂv ')’)
The meaning of this formula is, that by a parity operation the particle momenta reverse
direction whereas the normal remains the same (p; > —p;, n — n). From this formula
one sees immediately that the distribution of the normal is the same for the total sample
of experimental data or for the half of the particle-1-distribution.
Q2+42r Q+x

W, p) = ,! W(apy)dy = 2 ,{ W(aBy)dy.

{ want to stress that this is true only for one spin state decaying.
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As an example we calculate Wi(a, p) for the decay O~ — K-t~ (1t > 0-0-0-), assuming
that the Q 1s produced by an unpolarized initial state (that means: @ = (=)™ 0_m_m)-
There are two decay amplitudes Ty(xk,) and T_,(xx,) for this process. Using the for-
mulae above we obtain

— 3 . .
W, By = P {000 sin? B+p,,(1+cos® B)+p,_, sin® B cos 2a+

+2 /2 (Re g4 sin f cos ff cos a—X Im gy, sin § sin a)}

where X is an unknown quantity which is a function of the two amplitudes T; and T-,
integrated over the Dalitz plot (X = (F!'—F-1-)/(F1tF-1-1)),
Defining the moments of a distribution W(xf) by

Ca(e, B)y = falo, YW (s, B)d cos B du
we obtain
000 = 2—5<cos? B
Re p10 = 5/24/2 {sin 2B cos a)
011 = 5/2 {sin® B cos 2a)
X Imgo = —4 \/2/3n {sin o)

SCHC or TCHC mean that the last three moments have to vanish in the helicity or
Gottfried-Jackson systems respectively. I would like to mention a property of this distribu-~
tion. Assume that the K~ and n— particles cannot be distinguished experimentally (20 %
of the events in the Q-region for the experiment K—p — Qp — (K—rntrn)p at 10 GeV/c
have this defect). The normal, which can be defined as pgx-xp, reverses the direction
(B - n—p, x » n+a). An admixture of such ambiguous events therefore changes only
the moment X-Im g0, but leaves the first three moments unchanged.

The whole formalism of this section can easily be generalized to the case where
a generalized density matrix (various spin-parity values) is used for the decay into three
particles [13]. The distribution of the normal for a (1*, 0-) initial state is

WO ' («, B) = C{000,00X0+X1[010,10 sin* B+
+051,11(1 +cos? B)+2 (/2 Re py4 10 sin f cos f cos a+

+011,1-1 sin® B cos 20]—X,2 \/2Tm 044,50 sin fsin a} =
3
= on {3 +Al(011,11— 810,10) (c0s* f— $)+
+2 /2 Re 0y 10 5in B cOs fcos 404,11 X

X _
x sin? B cos 20]— A 3(«2 2./21Im gy, 10 sin B sin a}
1
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with:
C = 3/{8a[3 000,00X0 +(1 = 200,00X 1}

A = X,[{3 000,00X0+(1—000,00)X 1 }-

X,, X, and X, are functions of the three decay amplitudes (they are therefore unknown).
We obtain (compare this with the corresponding moments discussed above)

A RC 911,00 = <Sln 23 COos a>

Apyy,—y =3 (sin® B+ cos 20>

4 \/ {sin o)

A-=2Im = -
X, €11,00

1+4 -1
Apio10+ (Q(;o,oo ) — 2—5¢cos? 8.

For a vanishing 0~ contribution, 4 = 1 and the formulae are the same as discussed
before. We see that even for a 0~ admixture, SCHC or TCHC predict that the first three
moments vanish in helicity or Gottfried-Jackson systems.

2.5. Experimental results

In this part we discuss the experimental results concerning helicity conservation in
two-body reactions which have been published recently.

2.5.1. SCHC in nN — =N. A discussion of this process in terms of helicity amplitudes
was given by Bialas and Svensson {14].

Applying the formulae of section 2.1 we obtain for this process (unpolarized initial
states assumed)

Jaaa(s, 1) = Z d,aic(3)Alc,a
where A, and 1. have the values +1/2 (for short +). Parity conservation gives
Jesls, ) =f__(s,D)
oG, 0) = —f-.(5, ).
With a convenient normalization we obtain

do

E‘ = lf++l +lf+—l

2. o0 _fi_‘_f___ |f++|2+]f+-12 2i1m(f++'ff+-—) _
Gedd gy T\ =2 m (fa s S0) U PSP

_ do (1+1~3..

= o).

P is the polarization of the final proton.
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We find

P,=P,=0

b _2Im Uy f10)

Y e

(the polarization is therefore perpendicular to the production plane).

The polarization and angular distribution do not determine the scattering amplitude.
For this we need two further quantities S and T which are defined in the following way
(S and T are related to the Wolfenstein parameters 4 and R, see e.g. Barger and Halzen [6}).

do

ee _ 2 2
di feel"+1fs -

do .
Pgt— =2Im(f;:f+2)

do )
SE‘:‘ = ]f++‘2"‘§f+~12

do .
TE =2Re(fs+f+2).

Expressing the f, ;. by the t-channel amplitudes g, ; we obtain

de 2 2
— = +1g4 -
2 = (8l g
do .
Pgt‘ = —2Im(g++8+-)
dO‘ | 2 2 . *
S Py —cos 2x(1g+ +1"—18+-1)—sin 2y -2 Re (g+ +8+-)
do . 2 12 .
T'(—it* = —sin 2y(|g+ +|"—18+-i")+cos 2y -2 Re (g+ +8+-)

x is the crossing angle. SCHC means f;— = 0 and TCHC means g.— = 0. The polarization
is therefore the same for SCHC and TCHC, namely zero, and we need another quantity
to test helicity conservation. For SCHC T = 0 and for TCHC T = —sin 2y and this
condition has to be checked.

For n—p —» mp data at 6 GeV/c the parameter T has been determined as a function
of the four-momentum transfer [6] and the results, seen in Fig. 1, are well compatible
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10
0.5+
3
¥ T
X N
~ T=0 for SHC
*LLL 00 i HI_L
E'S
&
A7)
Q
N
~ -05

T=-sin 21 for THC

-10 | L
0 ~-0.5 -1.0 -15
t(GeV/c)

Pig. 1. The spin correlation parameter 7'(defined in the text) as a function of the four-momentum transfer ¢
for n—p —» np at 6 GeV/c, together with the predictions for SCHC (T = 0) and TCHC (T = —sin 2y)
(taken from Ref. [6])

50

+ds* 0d60] 2
+P g —P gy | mbl(GeVic)
—~ 3@ w0 Q0 oAa

- d6_
df

[7

-1 1

1 1 ] L 1 L
0 -0.5 -10 -1.5 20

t (GeV/c)?

Fig. 2. Polarization data for the I == 0 ¢-channel part of #N — nN for various energies as a function of ¢
(taken from Ref. [6]))
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with SCHC!. The polarization data from 2 to 11 GeV/c in the f-range from 0 to 2 (GeV/c)?
for all three charge states have been used to calculate the isospin I = 0 #-channel part
of the polarization. This is seen in Fig. 2. The polarization goes to zero with increasing
energy with Pt

The t-channel isospin decomposition

nponpifo S n

np— nn: —J2f* p——N

Therefore the isospin I = 0 part is o~ -+ot —0a°.

2.5.2. yp = 0% - (ntrn7)p. As already mentioned in the introduction, SLAC con-
structed a 92-949/ linearly polarized photon beam by Compton backward scattering
a low energy linearly polarized ruby laser beam on high energy electrons [i6]. This was
done at 2.8 and 4.7 GeV/c incident photon momentum to study the reaction yp — ¢% —
(m+7)p (the cross-sections for the reaction considered are 16.4 + 1.0 pb and 14.4 + 0.7 pub
respectively). The density matrix elements of the o° can easily be determined by the
decay angular distribution of the ¢° into two pions. This was done in the helicity and
Gottfried-Jackson frames to test SCHC and TCHC. The density matrix elements are deter-
mined as functions of the four-momentum transfer, up to |t} < 0.4 GeV2 As seen in
Fig. 3 the data are well compatible with SCHC [4], {17}

Actually the density matrix elements were also determined in the Adair frame (p rest
frame with quantization axis along the incident photon direction, but with this axis defined
in the total CM-system, and y-axis perpendicular to the production plane). This was done
to test whether the reaction is spin-independent, that means conservation of the z-compo-
nent of the spin. I do not want to talk about this.

2.5.3. yp = wp — (wtn~w®)p. It is interesting to test whether this reaction also shows
SCHC. For the following reasons it is expected to be much harder to get a conclusive
answer for this process

a) it is a O-constraint fit in the bubble chamber (it is a 3 prong with n° unobserved)

b) besides Pomeron exchange, m-exchange may play an important role

¢) the cross-section is much smaller than for p photoproduction (~ 3 pb at 4 GeV

for unpolarized photons).
The cross-section for unpolarized photons is seen in Fig. 4 (taken from Erbe et al. [3]).
It is not flat as would be expected for a purely diffractive process. Using the linearly polar-
ized photon beam, Ballam et al. [18] determined the density matrix elements of the w
vig the decay into ntn~n° (same as for ¢ — 7w, now with the normal to the (37) decay
plane as analyser). For high energies the contributions from natural parity exchange

! See also Halzen and Michael [15] where the helicity amplitudes for the two f-channel isospin
values — f _;_P f;_, fL, fo_— have been calculated from do/ds, do—[dt, do®[dt, P*, P, P°% and the
Wolfenstein parameter R-. The signs +, —, 0 refer to atp — #*p and z7p — 1% It has been found

]~ 0.
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Fig. 3. The spin-density matrix elements of the g° for the reaction yp — @° at 4.7 GeV as a function of ¢
in the Gottfried-Jackson, helicity and Adair systems (taken from Ref. [17])

Fig. 4. Cross-section for yp — wp as a function of the photon energy. a) for all ¢ (four momentum transfer

between incoming and outgoing proton), b) for ¢ < 0.5 GeV?, ¢) for ¢ < 0.3 GeV? (taken from Ref. [3])

(probably Pomeron) and unnatural parity exchange (probably m) can be separated. It can
be shown [9] that

ana o'\ll\

T 200, - o%

nat un

Oqa is the cross-section for natural parity exchange, whereas 6, is the cross-section for
unnatural parity exchange.

For the two energies considered, the cross-section for natural parity exchange is
compatible with being constant and it could be produced by Pomeron exchange.

28GeV ¢ = 58+0.5pub o, = 2.50+0.37 ub

47GeV o =32+03pb o, = 1.84+0.28 ub
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Assuming a mixture between s-channel helicity-conserving Pomeron exchange and
r-exchange amplitudes, the predictions for the density matrix elements are
A0 ou/dt - g +d0yaldt - o'
do,,/dt +do,[dt
o' is the s-channel helicity conserving density matrix (diagonal in the helicity frame)

and o} is the density matrix for z-exchange, which is diagonal in the Gottfried-Jackson
frame. The predictions and the results are seen in Fig. 5 and are in reasonable agreement.

Qi =

2.6GeV  47GeV 28GeV  47GeV 28GeV  47GeV

o R R

04
Reg% OE : E ! [ 02@ E%Tmé’:luoék‘ k‘:
04 Re?ro Et-‘—“ %—‘—‘
1.0

s 04T 04 2 E+ I
o1 O Eﬁ ol of— E B O+ #
04 L1111t 04 L1114 -],0-”::
00204 0 0204 0 0204 0 0204 0 0204 o 0204
Iti(GeV?) It1(GeV?) 1t(Gev?)

Fig. 5. The spin-density matrix elements of the w and the parity asymmetry P, = (Gnar— 6un)/(Gnat+ Gun)
for the reaction yp — wp at 2.8 and 4.7 GeV as a function of ¢ in the helicity system (taken from Ref. [18])

2.54. ntp —» A, %p - (ntntn)p. Helicity conservation for this diffractive process
has been studied by the ABBCCHLV-collaboration [19] for the 8 GeV/c nt and 16 GeV/c
nt and n~ experiments. Assuming that spin-parity 1* is the dominant contribution in the
A,-mass region the predictions for the 4,-density matrix elements are

8 (1) g in Gottfried-Jackson system for TCHC
00 0 in helicity system for SCHC

The experimental results have been determined by calculating some moments and are
almost compatible with TCHC. SCHC can be ruled out. Fig. 6 shows g, for 44 (and also
for Q- which will be discussed in 2.5.5) for different values of the four-momentum transfer
in the Gottfried-Jackson and helicity systems. The other density matrix elements are
not plotted but they are not far away from the predictions of TCHC?2,

As we have seen in 2.4.2, a 0- admixture does not drastically change our results,
when we calculate the moments. The g0 of spin 1+ changes, but the remaining non-diagonal
elements for 1t are only differently normalized and the corresponding moments have to
vanish in the Gottfried-Jackson system for TCHC. A more refined analysis for the 4;

2 In section 3.2.2 will be shown (from a more general analysis applied to these data) that there are
indeed small systematical deviations from TCHC.
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mass region was done in Ilinois [20], {21]. I would like to keep the discussion of this
analysis short because Kotanski will treat it in detail in his lectures. For various experi-
ments (mp - artnp at 5 GeV/c, 7 GeVie, 1.5 GeV/e, 11 GeV/e, 13 GeV/e, 20 GeV/c

----- t-channel hel. conserv. ~-—--S-channel hel. conserv.
Ay Q
7*0 —» prtTT 8GeW/e i p-eptrim T 6GeV/C Kp—» pKBrBm 10Gevre
. T T T T ¢ T .
S S Cu———
bg\\ =t —\I‘i\ ]
|k ~e 4 o 4 . i
& i '\\_ ER ~ &+ ‘\,\~
x| [ o) T b) f ~4l e/ ]
& § N s L N s . s N )
im } + + ¢ —t + + —
£} g L
S B
> % - s i ot et - 10
* I et —F— B
SIS N\ T\ IS
O]l ~ e ~ + \\ .
C S~ L N 1 ~ dos
8 E- \\‘~ T N T \\\ 47
S % ~\\j_ \\\ 1 \\\:
£f o) T e R ;
1Y) i L L r n L L i Q
0 0.2 0 0.2 0 0.2 04
2
-t GeV

Fig. 6. The spin-density matrix element gqo Of the 4; and Q in the helicity and Gottfried-Jackson systems

for the reactions mtp — A]L pat 8and 16 GeV/e, wp— A p at 16 GeV/c and K-p— Qp at 10 GeV/c as

as a function of t. The dot-dash and dashed curves are predictions of TCHC and SCHC (taken from
Ref. [19])

and 25 GeV/c) they made a partial wave analysis of the (3n)-system in the mass range
1.0 to 1.4 GeV. In this analysis the reaction is treated as a two step process: production
of the (3n) system followed by a decay via gn.

m d v
£
37, T
£
L
T= Y Tz p- (3n)p) T°*(Br - on - (nr)n)
R omind

The production amplitudes T*" define the spin states of the (37) system and give the produc-
tion density matrices.

OSnas'y' s’

The decay amplitude can easily be written down for the decay (3n) — (on — (nn)=. By
a maximum likelihood method the experimental data were fitted with the theoretical
predictions to get the best fit for the density matrix elements.
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The density matrix elements for the 1+ state (4,) agree very well with TCHC.

In the last mentioned method it is assumed that the production of the (37) system
in the A4, region can be split into a production and a decay process, that means that the
amplitude factorizes. This is an assumption which has to be tested.

There exists a third paper in which helicity conservation in 4, production is studied.
The Paris—Milano-Genova~-Durham-collaboration [22] analyse the reactions

ntd - (wtn—nt)d
ntn = (wrntnn ¢ at 11 GeVie.
np— (AR at)p

Assuming a pure 1% state for A4,, the density matrix elements are given in Fig. 7. They
are calculated by using the normal to the (3n) decay plane as analyser. The non-diagonal
elements are compatible with TCHC, but the diagonal matrix element g, lies away
from 1 in the Gottfried-Jackson frame. The authors also use the unambiguous = as analyser

Reaction aTN— N 31 O~ 377
Frame G.J. |Helicity G.J. Helicity
NE— — +
08 q_+ + H — ++
06 F -+ +
foo  g4f —— ;
0z2¢
Y o 'S WS Ee
02}
81 00 }:.*-_1_ — <IN ++
-0.2 3 ; ——
0zf +p— — + —
Re?w 0.0 ;.+ + « S x l++ o elile =
=021
- - b N Lo bl L
0.2
0.0 fem=——t— 3 .
Mmep " E T+
-0.2F
't - intervals o555 4 .05 .15 % Q20606 12 Q2.04.06 32

Fig. 7. The spin-density matrix elements of the A4, in the helicity and Gottfried-Jackson systems for the
reactions 7N — AN and ntd - A'fd at 11 GeV/c as a function of 7 (taken from Ref. [22])

and find that 0~ waves contribute. They find an asymmetry in cos $ and a ¢ distribution
which shows structure. Therefore non-TCHC-amplitudes must be present. In my opinion
these deviations from TCHC are not too serious, especially because this data (at least in
part) have been used in the analysis of the Illinois group who support TCHC.

2.5.5. K*p - QFp - (K*ntrn-)p. When testing helicity conservation in the K*experi-
ments, one has to realize that the Q* peak is obscured due to the presence of A*+ from
the reaction

K*p > Kgpod™ > (K*'n7) (n" p).
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These A++-events have to be excluded. If there is only 1 spin-parity state, then, due to parity
conservation in the Q-decay, all distributions are identical when the momenta of the
three-particles are reversed. One half of the distribution is in principle enough (see 2.4.2.)
Therefore all events which satisfy the following cut in the Q rest-frame are excluded [23].

(_;7:" ;p) 20

plane perpendicular to the
momentum 1_;1, (events
behind this plane are
—,To; {helicity axis) excluded)
This cut removes all At events and the remaining distribution of the normal to the (Knr)
plane is not biased and can be used for a determination. of the density matrix elements.
It should be noted that this is true when only one spin-parity state contributes. The spin-
-density matrix elements are calculated assuming 1+ for the Q-region and the results
are seen in Fig. 8. The g¢o is plotted in the Gottfried-Jackson and helicity frames as a func-
tion of the four-momentum transfer for various values of the incident K* momentum.
These values and also the other density matrix elements are compatible neither with

(a) 3.0< Pesg 4.4 GeV/c (b)
Jo\Heticity | Jackson ;| i
- -+ 4 6o} -
06k - 1 b ¥ A
S T P S i
02 1 1 1 1 F I
4.4< Pe+<70 GeV/e |
10 ':-*::*: ———————— "l—" —————— 60} Pt -
-+ H- 4 F 7 18
os | + ] 20pg 14 8
1 f 1 I H I ' 81
S 70 < P+ <9.5 GeV/c N
1] S 60+ AN
R e b
06+ 20T A
1 1 i 1 L i
9.5¢ B <12.7 GeV/e
0] R TP - .
- C*'++._|_. 60l e
06 |- + - -
- S 204+ -
L S o

0.2 ! 1
0 02 04 02 04

t (Gev)

02 04

Fig. 8. The spin-density matrix clement g0 of the Q in the helicity and Gottfried-Jackson systems for the

reaction K*p — Qtp and the position of the system with least azimuthal dependence for various incident

K+ momenta (1. 3.0-4.4 GeV/e, 2. 4.4-7.0 GeV/c, 3. 7.0-9.5 GeV/c, 4. 9.5-12.7 GeV/c) as a function of ¢
(taken from Ref. [23])
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TCHC nor with SCHC. The rotation angle (starting from the Gottfried-Jackson system)
for the system for which the density matrix is most diagonal has also been determined.
This system is always between the Gottfried-Jackson and helicity frames. A warning about
this method: it is surely not true that there is only one spin state contributing despite
the fact that probably one is dominating. The analysis is therefore doubtful.

The Q- production reaction is more reliable for a test of helicity conservation. The
problem with the A** is not so important since in K—p experiments much less A** is produced
than in Ktp experiments.

Two collaborations have published their data for the Q-region (K-p — Qp):

a) the ABBCCHLV-collaboration, at 10 GeV/c [19]
b) the ADLV-collaboration, at 8 GeV/c [24]

Assuming a pure 1t state the density matrix elements have been determined for

the Q-region as a function of the four-momentum-transfer (or in Ref. [24] of the crossing

T ¥ T T T 1 T — T T T T T
10— —— 3 - 1.0 prow
S s \\\\
0.75 —————I——« - . 075 - TN T -
1

S 050 - 4 Soso} \\\ N
025 i 0.25 o .

\\
i i i i f 1 1 i - 1 1 i i i =~

T T T T T T T T T T T T T T

//+’ — %\\\

-~ \\ -

i
mb
Fig. 9 Fig. 10

Fig. 9. The spin-density matrix elements of the Q in the Gottfried-Jackson system for the reaction K—p - Qp

at 8.25 GeV/c as a function of the crossing angle. The predictions of SCHC (dotted line) and TCHC (broken
line) are shown (taken from Ref. [24])

Fig. 10. The spin-density matrix elements of the Q in the helicity system for the reaction K—p — Qp at

8.25 GeV/c as a function of the crossing angle. The predictions of SCHC (dotted line)and TCHC (broken
line) are shown (taken from Ref. [24])

60° g 60° p—=
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angle, which is a function of the four-momentum transfer for a fixed mass of the (Knr)
system, see Fig. 13).

The results are seen in Figs 6, 9 and 10 and agree in first approximation with TCHC.
A 0~ admixture does not change drastically our results as explained in 2.4.2 and 2.5.4.
Another type of bias, that just in the Q-region about 209, of the events are such that K-
and 7 cannot be distinguished (we have for such events two ambiguous hypotheses), has
no effect on the density matrix elements gq0, Re 050 and gy_; as explained in 2.4.2.

2.5.6. m*p(d) = A3 p(d) = (ntrtn)p(d). Paler et al. [25] tried to determine the density
matrix elements for the A, in the reactions

ntd - ATd

Tp - A?p} at 13 GeV/c.

The background under the A; is not too large for the d-reaction and for the p-reaction
only (f°r) events in the A;-region were used. Assuming spin-parity 2~ the diagonal density
matrix elements have been determined as a function of the four-momentum-transfer.
The results for goo are seen in Fig. 11. They are compatible with TCHC.

oo
15F a Fb)
10_ ‘JL }
s T -
Ay
i {'
05¢ i -l
ER .
| i 1
L ___L___ 1 ':'
1 4 t
| Y
4 !
1 1 IS | + i
0 005 010 050 07+ 02 03 04

(t=tmin ) [(GeV)*]

Fig. 11. The spin-density matrix element g0 of the 43 in the helicity (broken crosses) and Gottfried-Jackson
systems (unbroken crosses) for the reactions 7ntd — A';'d (a) and ztp — A:-p (b) at 13 GeV/c as a function
of t' = t—tmin (taken from Ref. [25))

2.5.7. ntp —» ntN*(1700) - n*(pntn-). The Purdue-Notre Dame collaboration [26]
have studied the diffractively produced N*(1700) in
ntp —» wt(ntnp) at 13 and 18 GeV/c
np - n-(mntp) at 8 GeV/e.

The N*(1700) is seen above a large background. The whole region is believed to be in

a 5/2t state for which density matrix elements have been determined. The results are com-
patible with TCHC.
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3. Helicity conservation for the general case

3.1. Theoretical considerations

Up to now we have considered only two-body or quasi-two-body diffractive processes.
Let us consider now the general case in which two particles, ¢ and b produce diffractively
two packets of particles ¢ and d.

Such a process can always be described in the s-channel in terms of an infinite sum over
amplitudes with all possible helicities of the packets ¢ and d. SCHC means that there
are only non-zero amplitudes when the helicity of ¢ is that of g, the helicity of d is that
of b in an s-channel picture. This give simple tests which can be checked, as pointed out
by Cohen-Tannoudji et al. [27]. The distribution for each particle or particle combination
(normal to two particles) of the packet ¢ (or d) has to have a flat azimuthal distribution
in the helicity frame of the packet ¢ (or d). Similarly, TCHC can be tested since it predicts
flat azimuthal distributions in the Gottfried-Jackson system of the packet ¢ or d respectively.
This last test is just the Treiman-Yang test [28].

I would like to derive the formulae needed for a special case which has been tested
experimentally quite carefully.

ab — (cycy03)d.

For this case the packet ¢ consists of 3 pseudoscalar particles and 4 is a nucleon (e.g.
K=p -» (K*fnn)p or n¥p - (ntntn)p).

The transition amplitude for this process is as seen in 1.3 in the CM-system (z-axis
along incident particle, a, y-axis perpendicular to the plane formed by the particles b and d):

fldlb(ia;bﬁll-;liiiid) = <;15253EaldiT|1-;algb/1b> =
= faun(Ss t, M3, Ky, Ka, affy) =
= (P = 0,08M, aPyM 53k, K;, 44| TIP = 0, 00M, 4, =

= ¥ D (eBr)gniii(s, t, Myss, k4, k)
J123uK
1;,~ are the momenta of the particles in the CM-system. J,,3 is the angular momentum of
the system (¢, ¢, ¢3), p is the helicity and K is the component of the angular momentum
along the direction given by the two Euler-angles («f).

The Euler angles (xfy) are defined in the (c,c,¢3) rest frame with z-axis along the
(c1c,03) helicity axis (therefore along — P y-axis perpendicular to the plane formed by
the particles b and d, x-axis such that a right handed coordinate frame is obtained (this is
the helicity system). They specify the orientation of the momentum triangle. (afy) give
either the directions of the normal plus particle or the directions of the particle plus nor-
mal to the (¢,c,c3) plane. Instead of the invariance of the T operator against parity oper-
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ation it is more convenient to use the invariance against the reflection in the x—z-
-plane (Y =P - R0, n,0): TY = YT

[ Adxb(i;a;’b; 1525354) =

11 77b - S = -
= n——nan - | I (=Y su=1,(PaPuD P3PS PS) =
1712713%1d
i=1

= (—)1_Ab_}"y‘—ld*lb(;a;b;f;g;g(;d)

pr are the momenta of particles c,c,c5 reflected in the x—z-plane. Note that p,, py, Ps
which define the x—z-plane, are unchanged.

The angular distribution of the particles ¢y, ¢,, ¢; for unpolarized initial state and no
observation of the final polarization has therefore to be symmetric with respect to a reflec-
tion in the x—z-plane. This is also true for a Lorentz transformation within the
x—z-plane, e.g. for the helicity or Gottfried-Jackson-systems.

In the helicity or Gottfried-Jackson system the distribution for the normal to the
plane formed by the momenta of ¢,, ¢, and ¢, has to be symmetric with respect to a rotation
around the y-axis by =.

The angular distribution for a particle direction or the normal has the following
symmetry relation (for a fixed value of s, #, My,3, &, K5).

particle: W(a, ) = W(—a, p)
normal: V—V(oc, B) = Win—a, n— B

af are the first two Euler angles (or azimuthal and polar angle).
Applying SCHC to the example considered we have

J123,K

— pJ123.K |
gyldlb = gp

Aahy 5uo : 5/1,,14-

The amplitude f;,;, has therefore no a-dependence. SCHC requires a flat distribution of
the three particle directions ¢;, ¢,, ¢3 and of the normal to this plane around the helicity
quantization axis.

The proof for a test of TCHC is exactly the same and has the same prediction for
the f-channel quantization axis.

I would like to stress that these tests yield only necessary but not sufficient conditions
for helicity conservation.

All experimental tests which have been published use in different forms the test of
Cohen-Tannoudji et al., for SCHC and the Treiman-Yang test for TCHC.
There are essentially three kinds for this test:

a) just check whether the a-dependence is flat

b) test it by a moments analysis.

Here the angular distribution is decomposed in spherical harmonics and the expansion
coefficients are the moments:

W(a, p) = lz:<Ylm>YI:n(“ﬂ)'
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The following conditions have to be fulfilled for the moments:

particle normal
l.eality <Yj~m> = (__)m<ij>‘ <Yj-m> = (_)m<ij>‘
parity conservation Ljimd® = Yy L Yjemd = (=YY
helicity conservation {Ym» =0 for m # 0 (Yjn> =0 for m #0

The first condition reflects the fact that the angular distribution is a real function. The
second condition follows from the symmetry due to parity conservation discussed before.
The third condition is true for TCHC in Gottfried-Jackson and SCHC in the helicity
system and follows from the fact that no a-dependence is expected. Furtheron the moments
with j > 2J are zero if J is the highest angular momentum present in the sample.

c) test in LPS

Distributions in LPS are often used to select diffractive parts of the reaction considered.
Rotation of an event around the s-channel (or z-channel) helicity axis changes the position
of the event in LPS. This rotation corresponds to a complicated curve in LPS. When
helicity is conserved, the events are distributed isotropically around the helicity axis.
An arbitrary rotation around the helicity axis does not therefore change the physical
situation and the density of events on specific parts of the curve remains the same.
SCHC (or TCHC) is therefore checked if the population in LPS stays the same in every

region when an arbitrary rotation around the s-channel (¢-channel) helicity axis is per-
formed.

3.2. Experimental results

In this part we discuss the experimental results concerning helicity conservation
for the general case. We make no specific assumptions on the spin and parity content of
the packets ¢ and d, nor on the production mechanism (it is not important whether the
particles in ¢ and d come from resonances efc.).

The following experiments investigated the question of helicity conservation (data
are only available for single diffraction dissociation, that means one of the packets ¢ or
d consists only of one particle):

a) the system c¢ consists of two particles

ntp = (nnH)mt
- (pn®)rt+ } at 11 GeV/c (Durham-Genova-DESY-Milano-Saclay-collaboration)
np — (prn®)n-

b) the system ¢ consists of three particles

Kp - (Kntn)p

(prt)K- } at 10 GeV/c (ABBCCHLVW-collaboration)
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atp — (nEnta)p at 8and 16 GeV/c (ABBCCHLVW and ABBCH-collaboration)
(prtn)mt at 11 GeV/c (DGDMS-collaboration)

pp — (prtn)p at 16 GeV/c (Cambridge-IC London collaboration)
at 19 GeV/c (Scand. collab.)

3.2.1. n*p —» n*(Nn)*. The Durham-Genova—-Milano~-DESY-Saclay collaboration
tested helicity conservation in the 3 processes just mentioned [29]. They believe that the
reaction

wtp —» wtutn

is the best candidate for this analysis among those considered. This is due essentially to
the very weak production of resonances between the particles. To select mainly diffractive
events, the following cut, which does not introduce any biases in the distributions, was
used

Mnrl,,) < 1.8 GeV

tntng, < 0.7 GeV2.

Calculating the azimuthal distribution of the nj},, in the Gottfried-Jackson and helicity
frames they find the distributions in Fig. 12. The distributions in both frames are for all
three reactions. The dashed histogram shows the azimuthal distribution in the strictly
forward direction (¢,, < 0.08 GeVZ2). As you see the distributions (especially in the Gott-
fried-Jackson frame) are quite flat except just at & = 0° (the n and 73 are then in the
production plane). The authors believe that the spike in the first bin is a true physical
effect and conclude that both SCHC and TCHC are violated.

A warning: all these reactions are 1-constraint fits and the data are less reliable. It
seems to me peculiar that there is a spike just in one bin. Could it not be possible that
these events are not real natnt events? Forgetting the first bin, I think, the data are
compatible with TCHC,

3.2.2. n*p - (n*natn-)p and K-p - (K-ntn-)p. The ABBCCHLVW-collaboration
studied helicity conservation with n—p, n*p interactions at 16 GeV/c and with K—p inter-
actions at 10 GeV/e [30], [31]. The low mass (n¥ntn~) and (K-n*n-) diffractive events
were used for such an investigation. Starting from the Gottfried-Jackson-system for the
(nnn) or (Knr) respectively, a series of coordinate frames are defined by a rotation around
the y-axis (the helicity system is reached after a rotation which is equal to the crossing
angle). In these rotated coordinate systems, moments analyses for the three particle direc-
tions and their normal have been carried out. Among the various rotated coordinate
systems that coordinate frame is determined which gives the most isotropic distribution,
by calculating the minimum of the following x* as a function of the rotation angle y:

1=6
2 - <Ylm> )2
) Z<A<Y,m> ‘
t,m#0

The moments of this expansion have to be zero (within their errors) if no azimuthal depend-
ence is seen. The angle v = 0 corresponds to the Gottfried-Jackson system and o is
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Fig. 12. s-channel (¢*) and ¢-channel (¢) azimuthal distributions for reactions zp — a*na* (1), w*p —
— atpn® (2) and np — 7w p=® (3) at 11 GeV/c. The following cuts have been applied: (1) mass (ndew) <
< 1.8 GeV and fp+pp,  <0.7 GeV? or < 0.08 GeV? (shaded histogram) (2) for ¢*: mass (pn®) <2.0 GeV,

mass (7*7°)>1.0 GeV and tr+,+ <0.7 GeV? or 0.06 GeV2 (shaded histogram); for ¢*: mass (pn®) <1.5

GeV, ty++ <0.7 GeV2 or 0.06 GeV? (shaded histogram); (3) for ¢°: mass (pn°®) <2.0 GeV, mass

(7% >1.0GeV and tp-z-< 0.7 GeV?2 or 0.06 GeV? (shaded histogram); for ¢f: mass (pn°) <1.4 GeV
and tp-n- <0.7 GeV? or 0.06 GeV? (shaded histogram) (taken from Ref. [29])

the crossing angle for the helicity frame.? The maximum value of / in the above sum has
been limited to six, since the moments analysis shows that higher values of / do not con-
tribute in the mass regions considered. The y? is calculated for various (nnn) and (Knr)
masses and various four-momentum transfers (we actually calculate the x? as a function
of the crossing angle which is related to the four-momentum transfer as seen in Fig. 13).
The distributions for the K—-experiment are seen in Fig. 14. From these results we con-
clude that when the K—, 7~ momenta and the normal to these directions are taken as
analysers, the minimum system (the frame with the least azimuthal dependence) lies close
to the Gottfried-Jackson frame, whereas with the mt momentum as analyser one has

3 1t is to be noted that this method is sensitive to all « dependences in (cos f—a) distribution, even
including those which vanish when one projects out the a-distribution (method a) in section 3.1).
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a minimum system which systematically lies between the helicity and Gottfried-Jackson
frames. One analyser which does not fulfil the predictions of helicity conservation is
enough to exclude this hypothesis. We therefore conclude from this analysis that neither
SCHC nor TCHC holds. The results are similar for the (zmm) system. Except for the
unlike pion analyser, the minimum system tends to lie close to the Gottfried-Jackson
frame. The unlike pion fails TCHC.

The Paris—Milano—Genova-Durham-collaboration [22] studied the reactions

atn = (atrtn)n

np > (Tnn)p

Fig. 15. Longitudinal phase space (LPS) plot. X and Y are the reduced longitudinal momenta of the slow
charge — ambiguous pion and of the unambiguous pion. The dashed and dot-dashed lines correspond
to the LPS region used to draw the azimuthal distributions (taken from Ref. [22])

at 11 GeV/c and investigated the events in the longitudinal momentum plot (see Fig. 15),
where diffraction dissociation is dominant. They checked for this sample of events whether
the azimuthal distributions are flat. The phase space part selected is itself a bias. If one
chooses a particular event belonging to this region and rotates it (that means, rotates
the momenta of the particles around the relevant helicity axis), the event may eventually
leave the selected region. The selection of these events produces a cut on the azimuthal
distribution and the distribution is not flat even if helicity is conserved. To avoid this
bias, only events are used which do not leave the selected region when the rotation
is performed. The results are seen in Fig. 16 where the azimuthal distributions of the normal
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and the three particle directions are plotted in the two frames. The various columns corre-
spond to the selected region as seen in Fig. 15,

The data show a much better compatibility with SCHC than with TCHC which is
very surprising, since the density matrix elements for the 4; for the same data violate
TCHC only weakly.

The reason for this result is the selection used. With the cut used about 209, of the
events leave the appropriate LPS region for rotation around the s-channel helicity axis
and 75 %, for rotation around the #-channel helicity axis. But even the 20 % are of a certain
type (they remain in the same LPS region in case of a rotation for #,, mjnimum) as pointed
out by Meunnier and Plaut [32]. These two authors show that for a model for which
SCHC is strongly violated (reggeised Deck effect [33]) the cuts applied give compatibility
with SCHC. The results of Ref. [22] are therefore doubtful.

A similar analysis in the LPS has been done by the ABBCH collaboration [34] for
the reactions

np— (wnrnt)p at 16 GeV/c
ntp — (wtn-nt)p  at 8§ and 16 GeV/c.
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The events have been studied in LPS. As explained in section 3.1 helicity conservation
requires that the rotation around the helicity axis does not change the population in LPS.
The effect can especially well be seen for rotation around the r-channel helicity axis because
the events change strongly their positions.

77— 07 T TP at 16 GeW/c
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Fig. 17. LPS distribution of the events #p — - 7*p at 16 GeV/c before and after their simultaneous

rotation by 180° in the Gottfried-Jackson frame (thin bars) and in the helicity frame (dashed bars) defined

in the (37) rest frame and (prrtr) rest frame. The sector of particular interest is framed by a dark line
(taken from Ref. [34])

The results are seen in Fig. 17. Strong violation of SCHC is confirmed. A small,
but systematic violation fo TCHC is found for low (37) masses.

3.2.3. pK-[n%, p] = (pr*n)K-[n%, p]. The same analysis as for the diffractive
(37)-system was used by the Paris—-Milano-Genova-Durham-collaboration (Ref. [22])

to study the diffractive (Nnn) system in the reactions
wtn > wH(rdwnn)

_ at 11 GeV/c
np - n—(ﬁslown+1))

in the LPS. The resulis are seen in Fig. 15 and they are more compatible with SCHC
than with TCHC. But the method used gives unreliable results as explained in 3.2.2.
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The ABBCCHLVW-collaboration [30], [31] used the same analysis as for the
diffractively produced three-meson-system for the diffractive (pnr)-system in K~ (10 GeV/c),
7+ and = (16 GeV/c) experiments (see section 3.2.2). The x*(y) distribution for different
masses and four-momentum transfers (actually plotted in crossing angles) are seen in
Fig. 18 for the four analysers (the directions of the particles p, n*, n~ and the normal n
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Fig. 18. x%(y) (as explained in the text) for the analysers p, 7+, 7~ and the normal 7 to the (paw) plane for
various values of the masses (pmm) and crossing angles for the reaction K—p —» K~(pn'n~) at 10 GeV/c
(taken from Ref. [31])

to two of these particles). The results for all three experiments lead us to the conclusion
that the data are compatible with TCHC.

The ABBCH-collaboration finds the same conclusion for the diffractive (prn) system
in ntp (at 8 and 16 GeV/c) and np (at 16 GeV/c) experiments [34]. SCHC is strongly
violated but TCHC holds.

There are two reports on helicity conservation in pp-experiments. One comes from
the Scandinavian collaboration [35] and they investigate the process

pp — pn 4t

at 19 GeV/c incident p momentum. They checked the azimuthal distribution of the 4++
(which is the same as that of the 7~) and found it to be not very isotropic in both Gottfried-
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Jackson and helicity frames. Fig. 19 shows the ratio R as a function of the (prn) mass,
where R is defined as

B-F
" B+F
gt
" ~++ l+ T Hl |+| I L L B
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#ﬁ“ it

T T
sl 15 20 MUt )
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Fig. 19. Ratio R = (B—F){(B+F) (as explained in the text) as a function of the mass (4**7~) in the Gott-
fried-Jackson and helicity frames for the reaction pp — pA++n— at 19 GeV/c (taken from Ref. [35])

with B: events with )2 <a <=

F: events with 0 <a< 7/2
(the a-distribution is folded since parity conservation in the production process requires
W(x) = W(—a)).

TCHC or SCHC means R = 0 in the Gottfried-Jackson or helicity frame respectively
and both seem not to be in agreement with the data.

Another pp experiment at 16 GeV/c [36] investigates the reaction

pp — pprim.

They claim that their data are compatible with TCHC. As an example they show for
three mass regions of the (pnw) system (always taking the lower mass of the two possible
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masses: up to 1.55 GeV, 1.55—1.80 GeV, 1.80—2.05 GeV) the azimuthal distribution of
the proton in the Gottfried-Jackson and helicity frames. This is seen in Fig. 20. The shaded
histograms correspond to events with ¢ >0.05 GeV? (for ¢ = f,;,, the Gottfried-Jackson
and the helicity frame coincide). The distribution of the normal to the (pnr) system looks

(@) Psp c) Psp e) PP
o 607 120+ 120
‘5 Helicity
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S 404 804 801
&
.
<
o €01 40 404
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(b) 9 (@ (f) $tp
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2 // /]
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Fig. 20. Azimuthal distributions around the s-channel (gs) and #-channel helicity axis (¢;) for the reaction
pp — pprtr at 16 GeV/c as a function of the (p7rtn—) mass (< 1.55 GeV, 1.55-1.80 GeV, 1.80-2.05 GeV).
The shaded histograms correspond to events with 7 > 0.05 GeV? (taken from Ref. [36])

isotropic in both Gottfried-Jackson and helicity frames, and the distributions for the two
pions are not given.

The distributions are repeated with a A+ selection and the analyser is now the 4t+,
For low (pnn) masses the azimuthal distribution looks anisotropic in both Gottfried-
-Jackson and helicity frames, but for higher masses the Gottfried-Jackson system is again
the preferred one.

As a conclusion I would like to say that SCHC holds for elastic diffraction scattering
(I include here the photoproduction of the g-meson), but nearly all inelastic diffractive
processes are incompatible with this hypothesis. On the other hand TCHC is either
fulfilled for these reactions or only small deviations from this hypothesis are observed.
A conclusive answer is expected when we have more high energy data.

I would like to thank Dr D. Daliman and Dr P. Schmid for reading these lecture
notes, for correcting my English and for a lot of helpful comments.

REFERENCES

[11 M. L. Good, W. D. Walker, Phys. Rev., 120, 1857 (1960).
[2] S. Pokorski, H. Satz, Nuclear Phys., B19, 113 (1970).
{3] R. Erbe et al., Phys. Rev., 175, 1669 (1968).



844

(4] H. H. Bingham er al., Phys. Rev. Letters, 24, 955 (1970).

[51 F. J. Gilman et al., Phys. Letters, 31B, 387 (1970).

[6] V. Barger, F. Halzen, Phys. Rev. Letters, 28, 194 (1972).

[71 J. Werle, Relativistic Theory of Reactions, North-Holland Publishing Company, 1966.
[8] H. Pilkuhn, B. E. Y. Svensson, Nouvo Cimento, 38, 518 (1965).

91 K. Schilling et al., Nuclear Phys., B15, 397 (1970).

{101 G. Cohen-Tannoudji et al., Nuovo Cimento, 55, 412 (1968).

[11] K. Gottfried, J. D. Jackson, Nuovo Cimento, 33, 309 (1964).

[12] S. M. Berman, M. Jacob, Phys. Rev., 139, B1023 (1965).

[13} G. Otter, P. Schmid, to be published.

[14] A. Biatas, B. E. Y. Svensson, Nuovo Cimento, 42, 908 (1966).

[15] F. Halzen, C. Michael, Phys. Letters, 36B, 367 (1971).

{16] J. Ballam et al., Phys. Rev. Letters, 23, 498 (1969).

{171 J. Ballam et al., Phys. Rev. Letters, 24, 960 (1970).

[18] J. Ballam et al., Phys. Rev. Letters, 24, 1364 (1970).

[19] J. V. Beaupre et al., Phys. Letters, 34B, 160 (1971).

[20] G. Ascoli et al., Phys. Rev. Letters, 26, 929 (1971).

[211 D. V. Brockway, Study of three pion final state interactions in the reaction n-p — n-ntnp at 5 and
7.5 GeVjc, Thesis submitted to the University of Illinois (1970).

[22]1 D. Kemp et al., Lett. Nuovo Cimento, 2, 471 (1971).

[23] F. Grard et al., Lett. Nuovo Cimento, 2, 305 (1971).

[24] B. Buschbeck er al., Nuclear Phys., B35, 511 (1971).

[25] K. Paler et al., Lett. Nuovo Cimento, 2, 1063 (1971).

[26]1 J. W. Lamsa et al., Nuclear Phys., B37, 364 (1972).

[27] G. Cohen-Tannoudji et al., Phys. Letters, 33B, 183 (1970).

[28] S. B. Treiman, C. N. Yang, Phys. Rev. Letters, 8, 140 (1962).

[29] D. Evans et al., Tests on helicity conservation in x*p interactions at 11 GeVjc, submitted to the Amster-
dam International Conference on Elementary Particles, 1971.

[30] J. V. Beaupre et al., Tests of s- and t-channel helicity conservation in(prn*n-), (K-ntn) and (ntnta)
states produced in 16 GeVic mtp and 10 GeVic K- p interactions, submitted to the Oxford Conference,
1972. -

{31] P. Schmid, Helizitdtserhaltung bei Diffraktions-Dissoziation in K-p Wechselwirkungen bei 8.25 und
10 GeV]/c, Thesis submitted to the Technische Hochschule in Wien, 1972.

[32] J. L. Meunier, G. Plaut, Nuclear Phys., B39, 557 (1972).

[33] E. L. Berger, Phys. Rev., 166, 1525 (1968).

{34] Aachen-Berlin-Bonn—-CERN-Heidelberg Collaboration, Violation of both s- and t-channel helicity
conservation from an LPS analysis of diffraction dissociation in mp — mnzp, submitted to the Oxford
Conference, 1972.

{351 S. Ljung et al., Study of the 1470 and 1710 enhancements in A*tn~ mass in the reaction pp — pA*+
at 19 GeV/c, submitted to the Colloquium on Multiparticle Dynamics Helsinki, 1971.

{36] J. G. Rushbrooke er al., Nuclear Phys., B35, 1 (1971).



