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General features of diffractive dissociation in inclusive reaction are discussed especially
in the case when it dominates the high energy total cross-section.

The subject of this School is diffractive dissociation, of which unfortunately I know
very little. I am here not because I have anything to say but because 1 happen to have
many Polish friends. I hope you will appreciate that it was not an easy task for me to scrape
together sufficient material for these lectures.

While preparing for them, I was reminded of a story about a certain gentleman who
was asked to write an article about Chinese metaphysics. Since he knew nothing about
the subject, he looked up the Encyclopaedia Britannica and read the sections on China
and on metaphysics respectively. Then he wrote his article on the combined material.
I am afraid that in constructing these lectures, I have followed much the same tradition.

Since I am probably the first person to mention the word inclusive here, I shall start by
explaining what this means. Inclusive experiments are those in which one detects and
measures only some of the final particles in a collision without caring what else may also
be produced. For example

atb->x oy M)
a+b—ct+x @
a+b— ct+d+x ete. €))

These are to be distinguished from “exclusive” experiments where one detects and meas-
ures all the final particles, such as

a+b - ctdte. O]
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The inclusive approach to particle collisions is similar in spirit to what is usually
done in a many-body system when the number of particles becomes large, as for example
in a liquid. One is then not so interested in following in detail the motion of each individual
particle. Rather, one focuses one’s attention on collective quantities such as the density,
the correlation functions, etc. Similarly, when the final multiplicity is high, it is sometimes
more convenient to describe particle collisions in terms of inclusive cross-sections such
as (1), (2), and (3) instead of exclusive cross-sections, such as (4).

In these lectures I shall be discussing only general properties of inclusive reactions.
1t is therefore sufficient for our purposes to consider only an idealized system in which all
particles produced are of the same type. In fact this idealization is not too far from
reality, since by far the greater number of particles produced in high energy collisions
are just pions.

1t is useful to introduce the quantities

1 E do 5
0, = —E,.—
<! or Cdpsc ©)
1 do
02 = — EE;—— 6)

or dPidP?i

where ¢ is the cross-section, p.¢, the momentum of the emitted particle ¢(d) and E,, its
energy. Since (5) and (6) are covariant, one needs not specify in what frame they are to
be measured.

The quantity g,, may be interpreted as the probability density of finding a final
particle ¢ in the invariant phase space volume element dp2/E,. Thus, on integrating g,,
over all phase space, one obtains the average multiplicity,

§ 01dpYE. = <n. )

Similarly, g, is the probability of finding one particle in the volume element dp2/E, and
another in the element dp}/E,. The integral of g, over all phase space then gives

§ 02dp3E. - dp}/E; = {n(n—1)). (8)

The quantities p; are functions of the longitudinal and transverse components of the
final momenta p, p, . efc. Now it is a fundamental hypothesis in the theory of inclusive
reactions that the distributions g;, when considered as functions of the variables p, and
(* denotes CM system)

x = 2P\ /5 ©
approach finite limits when the incoming energy s —» o e. g.
im ¢y(Xc, Pyc; 8) = 07(xe P10 (10)
S

In other words, the distributions in p, and the scaled CM momentum x become inde-
pendent of the incoming energy when the latter is sufficiently high. Known as the scaling
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hypothesis of Feynman, this statement is supported by fairly strong theoretical arguments
and also by the gathering experimental evidence from, for example, the ISR. For the sake
of discussion therefore, I shall accept it as the truth in these lectures. The distributions g,
then take on a more basic physical significance being properties intrinsic to the system,
independent of the incoming energy.

For some purposes, it is more convenient to employ instead of x the so-called rapidity
variable y defined as

2 TE-py’

(1

This has the nice property that under a Lorentz transformation along the beam direction,
it is changed only by the boost angle w, thus

y—»y =yto. (12)

Considering then g; as functions of y and p,, one has from (7) and (8) that
§er(yody. = (n> (13)
§ 02(yer yOdyedy, = (n(n—1)> (14)

where the dependence of g; on p, and the integration over p, have both been suppressed.

It is often helpful to visualize the distributions of final particles in y and p, as being
analogous to those of molecules in a liquid or a gas. Since the transverse momentum p |
is known to be always restricted, ({p,> ~ 300 MeV), the molecules are confined to a
narrow tube in space, resembling for most purposes a system in one dimension. The length
of the tube is the kinematically allowed range of the rapidity variable y, which according
to (11) is Yoc log 5. The molecules near to the ends of the tube correspond to emitted
particles which have small momenta in the rest frame of either the target or the projectile,
or in other words the so-called ““fragmentation products”. Whereas, molecules in the
middle portion of the tube are ‘“‘central” particles whose momenta are large in the rest
frames of both the target and the projectile.

As in the case of ordinary fluids, it is convenient here also to introduce the correla-
tion functions such as

2:(Ve> ¥a) = 020 Ya) — 01(¥)01(¥a) 15)

which may be interpreted as the change in probability of finding a particle at y, due to
the presence of another at y;. The properties of g, depend on the interaction between the
molecules. In most cases of actual liquids and gases, the correlation function vanishes
when the separation between ¢ and d becomes large. If the function vanishes exponen-
tially with large separation, thus

2:(Ves Ya) = exp {—puly.— i}

L . 1 .
the correlation is said to be ‘“‘short-ranged” with range A ~ — . It may also vanish more
u
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slowly like a power in the separation ~ |y,—y4|~" as in the case of Coulomb interactions;
or it may not vanish at all; the correlations are then termed “long-ranged”. This concept
of range can be generalized to higher order correlations involving several particles. For
short range systems, the correlation function gy for N — particles has cluster decomposi-
tion properties; namely, gy vanishes whenever any subset of the particles become well-
-separated from the others. The characteristic distance over which the correlation function
is effective is again given by the correlation length 1 = 1/u.

Such systems with short range correlations are particularly easy to visualise. Consider
a collision in which the energy s is so high that the length of the rapidity plot ¥ « log s
is much larger than the correlation length A. Particles in the central region of the plot
being then many correlation lenghts away from the ends of the tube will not feel the effects
of the boundary any more. One thus expects the density of the fluid there to be uniform
namely that p,(y.) will be constant independent of y.. The average multiplicity as given by
(13) will then simply be proportional to the length of the tube, i. e. {n) x log s. More-
over, the two-body correlation function g,(y., y,) will be translational invariant in the
central region and depends only on the separation the two particles: y,—y,.

Now in the same way that the correlation functions between the molecules of a fluid
yield information on the basic interactions between them, it may be expected that the
correlation functions in hadron collisions may also teach us something about the
mechanisms by which particles are produced. As we shall see, this is indeed the case.

We turn now to diffractive dissociation. By this I shall mean at the moment merely
these processes where the cross-section for a fixed multiplicity, o, say, becomes independent
of the incoming energy as the latter becomes large. Our interpretation is of course in accord
with the usual one in which the incoming particles become diffractively excited by the
collision, and after that individually decay, emitting a number of secondaries. Since the
excitation is “‘diffractive”, the cross-section is by assumption energy independent, and
since the excited fireballs are supposed to decay independently, each will yield a definite
distribution in multiplicity, implying therefore constant ¢,. Our present definition of
diffractive dissociation being so general, presumably few physicists would object to the
existence of such processes. The question then is merely whether such processes are ex-
pected to dominate high energy collisions, or whether they form only an insignificant
part of the total cross-sections. Our purpose here therefore is to help answer this question
by looking for characteristic effects of diffractive dissociation in inclusive distributions.

The first thing to notice in this direction is the following fact: namely, diffractive
dissociation necessarily implies long range correlations [1]. That this is so, can be seen as
follows. Consider the mean square fluctuation in the final multiplicity defined as follows:

(n=Cnp)?y = z (n—n)? % (16)

By means of (13) and (14), this can be written as
{n=<m)> = | 02(ves Yy dys—
— J 10y~ § 010y, f e1(v)dya- an



883

Introducing the correlation function g, as defined in (15) one has then

{(n—=<nY)?> = | g2(¥es YAy dya— | 01(y)dy.. (18)

If the correlation function g, is purely short range, previous arguments suggest that o,
is constant and that g, is dependent only on y,—y,. One may therefore integrate y, first
over the length of the tube and write

{(n—<nY)*>oc log s[f gx(ye— ya)d(y.—ya)— const]. (19)

Since g, is short ranged, the remaining integral is also just a finite constant independent
of the energy. Thus

((n—(n})z) o log s. (20)

However, by (16), one has also for any fixed m

2 20m 2 0m
{n=Lnp)"> = (m—<{ny)” — « (log 5)* —. (21
ar or
Combining (21) with (20), we then deduce that
o, _const
— < (22)
or logs

which implies that ¢,, cannot have a diffractive component. It 1s easily seen that assuming
a slow logarithmic increase in s of o4 or a similar decrease of g,, will not help. Indeed,
by considering higher moments of the multiplicity fluctuations, very similar arguments
will show that short range correlations necessarily imply

I < const x(logs)™" (23)
or

for any m and r, which is certainly in contradiction with any idea of diffractive dissocia-
tion.

Therefore one way of recognizing diffractive effects in inclusive distributions is to look
for long range correlations. Unfortunately, however, attempts in this direction so far have
yielded indefinite results. Firstly as remarked above, the single particle distribution g,(y.)
is expected to be the independent of y. if the correlations are purely short range. Whereas,
if long range correlations exist, no such *‘plateau” is predicted. Now recent experimental
results from the ISR at CERN have yielded rapidity plots which are remarkably flat
in the central region, as illustrated in Fig. 1, quite consistent with only short range cor-
relations [2]. Secondly, if correlations are purely short ranged, the particles at one end of
the tube will not feel the presence of the other end. In other words, the distribution of
emitted particles with small momenta in the target frame will not depend on the nature
of the projectile. One example of such so-called tests of factorization is shown in Fig. 2
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where the data are seen to be in good agreement with the preceeding predictions and
again show no evidence of long range correlations [3]

The examples quoted above, though doubtless worthy of consideration, are not
decisive. Beside the lack of accuracy in the experiments, the apparent absence of correlat-
ions is observed only betwecn the emitted particles and the ends of the tube, and not
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Fig. 1. Distribution of charged particles in rapidity in the central region. Data from the ISR
Fig. 2. Normalized distributions g, of 7z~ with small momenta in the target frame from pp and K*p collisicns.
Similarity of distributions supports short range correlations

between the particles themselves. Whereas, in deriving (23), it was the second type of
correlations which really matters. To resolve this, one will have to wait for the next
generation of ISR experiments. Analysis performed at up to Serpukhov energy have
indeed indicated strong correlation between emitted particles. However, because of the
limited energy, it is not known whether these correlations will still persist at large separa-
tions.
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In order to proceed further, one has to be more specific in defining what one means
by diffractive dissociation. Let us first take the extreme view that the total cross-section
is ultimately all dominated by diffractive processes so that

or =)0, (24)

where each o, is a constant with respect to the incoming energy s. The sum over z in (24)
is presumably to be carried to the kinematic limit, namely to N(s) = ./s/m where m is
the mass of the produced (identical) particles. One requirement on diffractive dominance
models is thus that the sum (24) be convergent. Next, the average multiplicity {n} can
be written as

{ny =} no,loy. (25)

This is known to increase slowly with the incoming energy, with most theoreticians biased
towards a logarithmic dependence: {n) o log s. One natural assumption then is to take
for large n [4]
1
G, n—z‘ (26)

which on summing yields a finite o whereas the average multiplicity (25) diverges logarith-
mically with the upper limit N(s)oc \/fv, as required. The conclusion (26) is not strictly
necessary. However, in order to satisfy both the imposed criteria on the total cross-section
and the average multiplicity, g, is not likely to have very different behaviour.

Now, if ¢, is energy independent, the condition (21) already implies that {(n— {n})?*>
should diverge faster than (log s)2. If we accept further the condition (26), one has the
more definite predictions

{n—=<{m)*> ~ ¥ nPo,oc /5. (041))
This fluctuation is much bigger than that expected for short range systems, which accord-

ing to (20) is proportional only to log s. That this is so, can easily be seen as follows.

St
6n 52

n
¢)

Fig. 3. o, as a function of » for a) purely diffractive, b) purely short-range, c) mixed mechanisms

Since o, is constant with respect to energy, the distribution of &, with n can change with s
only at the upper limit as illustrated in Fig. 3a. In order to obtain an increase in average
multiplicity as required it is necessary for ¢, to have a long tail in n. Now in calculating
the fluctuation, the long tail is even more emphasized since o, is multiplied by »? in
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averaging, leading this to a strong s dependence as in (27). Similarly, one sees that higher
moment fluctuations have even stronger energy dependence, e. g. {(n—<{nd)*> o s.
This is very different from the case of short range systems where the increase in average
multiplicity comes mainly from a shift in the peak of g,, as illustrated in Fig. 3b.

The fluctuations can then remain small as the energy increases. This difference between
short-range systems and systems dominated by diffractive dissociation is so dramatic,
that probably one will not have to wait very long before experiments from the ISR will
tell us which alternative is favoured by nature.

Next, we inject into our discussion the original picture of diffractive dissociation, as
first an excitation of the incoming particles into fireballs followed later by their decays.
If the fireballs excited are always of finite mass the momenta ot their decay products will
always be finite in their respective rest frames. As the incoming energy increases, the
fireballs are separated by higher energies also. On the rapidity plot, therefore they move
further and further apart, with their decay product sticking, as it were to the ends of the
tube. In the central region, there will thus be a hole in the distribution. Experimentally
as we have seen, this is very far from the truth.

In order to describe the experimental situation adequately, therefore, one must allow
the excitation of high mass fireballs, which being produced with a small momentum in the
CM system, will produce slow secondaries to fill up the central region. One does not
expect these heavy fireballs to be excited frequently. None the less, their excitation proba-
bility P(M), say, for fireball mass M, must have a sufficiently long tail in M to produce
the desired effect. A favourite choice for workers in this field is that for large M

P(M) ~ 1/M?2, (28)

Now once this choice is made, the decay pattern of the fireball is no longer arbitrary,
since one has also to satisfy (26). Indeed, if N(M) were the average multiplicity in the decay
of a fireball with mass M, it is seen that one must have

N(M)c M. (29)

This would be the case indeed if the fireball decays isotropically with the final particles
sharing equally the available energy. However, one may well begin to doubt the propriety
of this assumption, if the fireballs were to decay for example preferentially by cascade.
Let us none the less accept it at present as a working hypothesis.

With the conditions (28) and (29), one is indeed able to reproduce the known quali-
tative features of the experimental single particle distributions. As pointed out before,
however, the flat distribution in the central region does not come out naturally in this
picture, but more as a detail feature of certain particular models. Indeed, in the context
of the present framework, the rapidity variable y loses its significance. Its main virtue
was its simple transformation property (12) under Lorentz boosts along the beam direc-
tions and it is useful when there is translational invariance in the central region as in the
case of short range systems. In the present case, it is much more convenient to use instead
the Feynman x-variables, defined in (9) which is the CM longitudinal momentum
scaled by the maximum momentum allowed kinematically.
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The variable x ranges from —1 to +-1. The region x < 0 (> 0) corresponds asympto-
tically to the fragments of the target (projectile). One can see therefore that the correlation
between particles emitted in the same hemisphere must be very different from that between
one particle from the left (x < 0) and one from the right (x > 0). Indeed a particle with
x < 0, being a decay product of the target fireball, need not be associated at all with
a decay product of the projectile fireball with x > 0. Whereas two secondaries in the
same hemisphere are expected to be strongly correlated. Thus, for example one expects
that as s » o [5]

)
s s ! 6o
but as in (27)
(n"Yy -
"<7(S'2“ ~ \/S. (31)

The predictions (30) and (31) already indicate that the point x = 0 is a singular point
in the present picture. This is further emphasized by considering the two particle distribu-
tion , as a function of the variables x.and x,;. As explained above, particles emitted near
x = 0 come from the decay of heavy fireballs which prefers a high final multiplicity with
the final particles having relatively low momenta to one another. Thus given a particle
at x,, it is highly probable that one finds another close to it at x; coming from the same
event. In other words, one expects g,(x., x,;) to become very large when both x, and x,
are close to zero in the same hemisphere. Indeed, based on more specific arguments some
authors have suggested that one has a singularity in g, of the form:

lim g5(x, x4) ~ L (32)
X +X4

as either x., x, — 0t or x., x;, » 0~. Notice, however, that this argument applies only
to particles in the same hemisphere coming from the decay of the same fireballs. In con-
trast, for example, the limit of g,(x,, x,) as x, = 0~ and x, — 0" is expected to be finite.
One sees therefore that the dominance of diffractive processes at high energy will
lead to strong predictions drastically different from those expected for short ranged
systems. In the end only further experiment will tell us which picture is correct. Personally,
however, I must say 1 doubt that diffractive processes will dominate entirely. On the
other hand, 1 am also quite confident that some diffractive processes will persist. It is
quite possible that even at very high energy, one has still partly diffractive dissociation,
and partly short-ranged mechanisms such as multiperipheralism. Diffractive dissociation
may contribute significantly only to low multiplicity events, and only to the production
of particles with small momenta in the target or projectile rest frames. In other words, the
excitation probability function P(M) introduced in (28) has a much shorter tail than that
indicated. Whereas, in the central region, the dominant processes may be short-ranged,
giving us naturally the observed plateau in y. The many predictions of factorization could
then still be approximately valid. 1 am certainly neither the only nor the first person to
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hold such views. The pioneer in this way of thinking, as indeed in much of what I have
said, is K. Wilson who has made a penetrating study of the problems involved and even
suggested an experimental program for investigation [6]. 1 shall only mention one of the
features he proposed, namely the shape of &, at high energy if such a picture were true.
This is illustrated in Fig. 3c. I understand also that Biatas, Zalewski and other members
of the Krakéw group are making a careful study of similar questions and have already
made several concrete proposals. There is no better way of concluding these lectures than
by inviting them to share their wisdom with us during the discussion.
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