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A1lguments are given that the tradiiional, Glauber-like model for the multiple scattering
of composite objects be modified to the extent of including relativistic deformation of the
wave functions. It is argued that this modified formalism is a specific realization of Van
Hove’s model of coherent nuclear production of multi-body states and thus is sufficient
to explain the astonishingly small nucleon total cross-sections that have been extracted from
multi-boson production experiments. It is shown on the simple example of Lorentz-contracted
oscillator wave functions that, to have Van Hove’s effect present, the interaction between the
components of the diffractively produced object must be of the order of magnitude of their
masses.

The recent experiments of coherent diffractive production of three- and five-pion
systems from nuclear targets are usually interpreted as showing very small absorption
of such multi-pion systems (the total 3z-nucleon and 5n-nucleon total cross-sections extract-
ed from such experiments are not larger than the pion-nucleon cross-section [1]).

There are a few theoretical papers suggesting various interpretations of this phenom-
enon (see e. g. Refs [2, 3, 4, 5]). In this note we discuss the more traditional (Glauber-
-like) models which construct the production amplitude from elastic multiple scattering
of the components of the produced multibody states [6, 7, 8]. Some differences between
such models and the Van Hove description of coherent production [3] were pointed out
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recently by Gottfried [4]. In the present paper we shall rather emphasize similarities
which go very far provided one introduces some relativistic deformations of the wave
functions of the diffractively produced composite objects. Before going into the discussion
of our model let us stress that if one assumes that the incident particle and the object
produced are composed of the same number of components [2] the experimental results
of [1] are obvious and there is no puzzle to explain. We shall, however, assume that the
outgoing object has more components than the incident particle: e. g. the incident pion
is to a good approximation one ‘‘bare” pion plus a small admixture of a three “bare”
pion state, the outgoing system, however, is mostly a three “‘bare” pion state with a small
admixture of a one ‘“‘bare” pion state [8].

We analyse the problem using a Glauber-like formula [6] for the coherent production
amplitude from a nucleus with 4 nucleons:

M, (1) = ;ﬁ jdzbe“"‘kﬂ {1— TT a-renii (1)
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where 4 is the transverse momentum transfer (we shall work in the limit of very large
incident momentum where the longitudinal momentum transfer can be neglected). I';(b)
are the profile-operators of the target nucleons as functions of the impact parameter b;
they act, in general, on the internal coordinates of the produced object which, during the
process of scattering, gets excited and deexcited.

In order to clarify these concepts let us write explicit expression for I'; in the case
where the produced object is composed of two elements [6]:

I'i(b, 6 = SdZSQi(S) [le(b‘%4‘+s)+?j2(b+% {+s)—
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where g(s) = | dzo(s, z) is the two dimensional single nucleon density distribution of
— 00

Jj-th nucleon, y;; and y;, are the nucleon profiles of the two elements, and ¢ is the transverse
distance between these two elements. In this case, if we neglect spin and isospin efc.
internal quantum numbers, the various states should be described by wave functions
which depend only on the relative distance {.

We shall also be interested in the limit of (2) when the target nucleus becomes an in-

finitely long slab (or, alternatively, when the object undergoing scattering is much smaller
than the target nucleus):

Fj(C) = E[jdzsij(s)Jr jdzsyjz(s)—-
- jdzs)’n(s";‘ C))’jz(s“;“% H1 &)

where o is the average single nucleon density.

Let us go back to the general formula (1) and write it in an approximation which
contains as special case both; the standard Kolbig-Margolis formula [9] and Van Hove’s
formula [3] for coherent nuclear production. We assume that the transition from the
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incident particle to the excited composite object is weak and we include it in the lowest

order. The transitions between various states of the outgoing object, however, are included

to all orders. Fig. 1 illustrates such process. The amplitude for the process shown in Fig, 1

one can write inserting various intermediate states |m) in between the operators I';:
A

M,(4) = ;—’; jaﬂbe“"” S Z (1= fITImY) (A~ {mil im'Y)...
stl“l'llisot;:ire:’l’l et
e M| Celiy (L =CR)...(F =Kl i), C)

where by a “history” we understand a possible sequence of intermediate states: |m),
Im'> ... im_> after the ¢ step took place (see Fig. 1). We obtain the Kolbig and Margolis

|
O o
|
Ii> states | {m) states

Fig. 1

formula when all intermediate states |m) are identical with the final state |f), and
Van Hove’s formula if we perform the sum over all possible “‘histories™ of the produced
object. This sum one can perform [3] diagonalizing the operator {(m'{[|m):

Tla) = 4,l0.
Then
A
S = ZZM@(I—AJ” alT iy (1=KilT|ip)*~* =
sum over all a c=1
‘*histories”

(L=<IT iy —(1--2)* s
= pp— {Sflay Lallfi.
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The form used in Ref. [3] is obtained by going to the optical limit: (1 —x)*->¢~** and we
finally get
— ATy _ o= Ala

M(4) = ;’H d2be™* z Sy ail iy = : )

GIFNiY =2,

As was discussed in [3] and [4], the spectrum of eigenvalues determines attenuation prop-
erties of the outgoing composite system. From (5) one sees that the 4,’s should be small
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to have, as observed in experiment, low absorption of the outgoing system. But in order
to have that, {m'|I'im) should be ,,smooth” and in particular it must not contain a delta
component or any other “‘spikes™ [3, 4].

Let us first point out that in the limit of a very large nucleus (Eq. (3)) and if one uses
orthogonal wave functions of the two states |m) and |m’')> the matrix element
{m'\I'lm}) does have d,, ,, which comes from the first term of (3) (which does not depend
on {). A similar argument was given in [4] to stress the difference between the Van Hove
and Glauber-like models. One should, however, make, at this stage, a point which stems
from Refs [10] and [11]: In diffractive production processes in the limit of very high
energy the energies of the produced system bzfore (mass M) and after (mass M') collision
with one nucleon of the target are:

E = \/M2+p2 (mstate), E = \,-‘/M'2~{~p2 (m’ state).

(There is no longitudinal momentum transfer in this limit and small transverse momentum
transfer can be neglected.) Hence the Lorentz contraction factors are different for
these two states, the ratio being:

y EM M

vy  EM M

Thus, in general, the relativistic deformations of the states with different invariant
masses are different and hence these states are not orthogonal to each other, with
the consequence that {m’{I'im)> does not contain the unwanted 6, , term. In other words,
we obtain a specific realization of the Van Hove model, provided we introduce relativ-
istic deformations in the wave functions of the diffractively produced object.

We do not know of any consistent way of introducing the effects of relativistic defor-
mations in the wave functions of our model. Merely as an illustration which may give
some idea of the importance of such effects let us mention the simplest possible effect
(introduced in [10] and [11]) of contracting the longitudinal variable z which, in a stan-
dard Glauber-like formula, gets integrated over and does not play any role: in the case of
different Lorentz factors in the initial and final states one scales differently the z variables
(z = yz in |m) and z = Y’z in |m')), and hence the states are no longer orthogonal. The
results of Refs [10, 11]show that indeed such a simple operation produces an excellent
agreement between the quark model calculations of diffractive N* productions (on
nucleons) and experiment.

A general comment is in order here. By introducing a set of relativistically deformed,
non-orthogonal states |m), we depart quite far from the standard Glauber-like picture.
The most important deformation is introduced into the longitudinal degrees of freedom
on which the conventional profiles I' do not act at all (they act on transverse degrees
of freedom only). So, by constructing {m'II'/m> with very strongly overlapping
states jm), im’> (see bzlow), we make its diagonalization non-trivial (I" becomes, in
general, non-diagonal in the position space representation), and weakly dependent on the
specific form of I' (strong overlap also results in weak dependence on m, m’).
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In order to illustrate our points we also computed the transition matrix elements
{m'|['lm) of the operator (3) in the case of a Lorentz contracted harmonic oscillator.
That is to say, we scaled the z coordinates of the relative distance between the two sub-
units of our diffractively produced composite objects using the prescription given above.
The quantum numbers of the two states |m) and [m') were identified with the oscillator
quantum numbers ng, n,, n, and ny, n,, n,. Hence the masses of the excited states are
given by

M= My+ns, n=n-tn+n,, (6)

where M, (the mass of the ground state) and w (difference in mass of the neighbouring
excited states) are accepted as free parameters. From (3) with gaussian elementary pro-
files and the oscillator potential wave functions we obtain the result that {(m'|I"'\m) is
a function of the vectors a(n,, n,, n,), n(n, ny, n,) and g = /M,. The matrix element
{(n’\I''n) of (3) is(due to the different Lorentz contractions of the two states) a broad function
of Mand M’ if u 2 1:The M’ dependence for a given M is weak and varies slowly with M.
When u < 1, {n'|I'|n) becomes very sharp (é-like) function of M, M’ with the peak at
M’ = M. If the parameters of the two elementary gaussian profiles are chosen to repro-
duce approximately the pion-nucleon elastic cross-section (compare e.g. [6]), the
single scattering term of (3) dominates and double scattering contributes only about
10%.

We interpret these results as follows: The larger is u the stronger is the interaction
between the components of the diffractively produced object. Hence, in order to have
Van Hove’s effect [3], the interaction between these components must be strong (¢ 2 1).
When the interaction is weak (1 < 1) there is a sharp peak in {a'|I'|#) and the condi-
tions imposed on {n'|'\n)y by Van Hove [3] are not satisfied. It would seem therefore
that the effect of anomalously small absorption will not show up in the case of diffractive
dissociation of small nuclei on large nuclei (it is presumably a g < 1 case): one has to
have interaction energies comparable to the rest masses of the components. In a more
realistic model of the spectrum of a diffractively produced system, one should rather have
a ladder of quasistationary states which overlap very strongly with each other. Although
the computations described above were done for a not very realistic
case, our qualitative conclusions are presumably quite general.

Our last remark is that relativistic deformation of the wave functions of diffractively
produced objects is not the only effect which makes {m'|I'/m) smooth and produce low
absorption of these objects. The finite sizes of such objects (relative to the target nucleus
size) also tend to reduce absorption as was shown in [8]. However, the relative importance
of these effects is still not well known.
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