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‘The problem of high energy p-p scattering is investigated in the approximation in which
the colliding particles are treated classically. It is assumed that the interactions of these particles
can be described in terms of some, (unspecified in detail), short range interactions and in terms
of massive vector mesons exchanges. It is shown that for a reasonable choice of the classical
world lines of the protons the high energy elastic differential cross-section is consistent with the
Regge model predictions and with the experimental data. The amplitude of the inelastic 7-p
process with n vector mesons in the final state is also calculated. It is shown that, in general,
the number of the produced vector particles is not governed by the Poisson distribution.

1. Introduction

Particles moving with very high momenta can be described in quantum mechanics
in the semiclassical approximation. The wave function of such particles can be written in the
eikonal form known in geometrical optics [1] and their motion can then be treated as the
classical motion along certain trajectories. Highly energetic particles can be described by
semiclassical methods also in the relativistic quantum field theory [3]. Classical world lines
of these particles determine the current J, which acts as the external source of quantized
vector field.

The subject of the present paper is an application of the semiclassical approximation
in quantum field theory and a qualitative comparison of the results obtained with the
experimental data on elastic p-p scattering. The interaction Hamiltonian is divided into two
parts: the part corresponding to the unknown short distance interaction (hard part) and the
part corresponding to the vector mesons exchanges (soft part). The second part of the inter-
action is assumed to have the semiclassical eikonal form mentioned above. It is shown that
one can choose the current in such a way that the final form of the scattering cross-section
is consistent with the predictions of the Regge model and with the p—p elastic scattering
experimental data in the large s and small ¢ region. In particular our model describes the
fall-off of the p-p cross-section at small ¢ and predicts the shrinking of the diffraction peak.
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In Section 2 we give the general description of the model. In Section 3 we evaluate the
contribution to the scattering amplitude from the emission and absorption of the vector
mesons by the same particle. In Section 4 we obtain the contribution from vector meson
exchanges between both particles. In Section 5 we evaluate the amplitude of the inelastic
process with n vector mesons in the final state. Finally, in Section 6, we compare our results
with the Regge model and with the experimental data. We discuss also some possibilities
of a further development of the model.

2. General description of the model

The elastic p—p scattering amplitude can be expressed in terms of the matrix elements
of the S operator:

S(p2» 925 P1> @) = {P29alSIPrgy)> 2.1)

where p,, ¢, and p,, g, are the four-momenta of the colliding particles before and after the
scattering.

In the present approach to high-energy collisions we will assume that protons interact
strongly via some short-range forces which will not be specified in detail. In addition, protons
will be assumed to interact via massive vector-meson exchanges. The coupling of vector
mesons to protons will be treated in the approximation in which the recoil of the proton
is neglected and the protons will be assumed to move in a fully prescribed manner as deter-
mined by their (unknown) short range interactions. The motion of the protons considered
as the source of the vector field ¢, will be treated classically. The short range interaction
and the interaction with vector field will be called respectively the hard and the soft part.

The separation of the interaction into two parts will be expressed by the following
factorization property of the S operator:

v —ifd*x(H, +Hgqfy)
y = Te hard O = ShardSsoft’ (22)
where:
Sy = Te 4 Hnard (2.3a)
Spoge = Te I ¥5Hsoft — g X", (2.3b)

We have assumed that H,, ; does not depend on the vector field and that the current J,

is a c-number function.
The factorization of the S operator leads to the factorization of the scattering amplitude:

S(pa» 433 P1> 1) = <Pag2lSharal P11 015401 10D, 24

where we have taken into account that the initial and final two proton states are the vacuum
states with respect to the vector field.
The hard part of the interaction is written in the conventional form:

{Pa2lShardl P131> = {P29a) 19>+
+i(27’)4‘5(4) (Pat+9a—P1— 1) Thara( P2 923 P1> 40 2.5)
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and it can be split into two parts according to whether the nucleon lines connect p, with
ps and gy with g, or p; with g, and ¢; with p,:

Taea( P2 925 P> 71) = T(P2s Go5 P1> 90— T2 P23 P1> 40)- (2.6)

Examples of diagrams contributiong to the first and the second part are given in Fig. 1.
Finally, the full scattering amplitude can be expressed in the following form:

S(Pa» 923 P1> §1) = < Padalprgr) +i(2m) 46 (py+g3—p—qy) X

X[T(pg ga3 P1> §1) O0lSs0l0>— (P2 < @)1 2.7
P>
2 : 9,
PHz
Py 94 Py 94
Fig. 1

The current J, will be written as the classical current of point particles:
+o0 +o0
L) =g [ 46500—8+g [ dn,oO—n), 28)

where &, and 7, represent the world lines of the two particles and g is the proton-meson
coupling constant. The world lines will be chosen in the following simple form:

u (pa— T
£ =P 2;;5 e gy 1P = ”f’ VeI T T 5,02, (2.9a)
7]/‘(}') (‘I2‘|‘91)u 2.+ ql)l‘]/ 2+12 b /2 (29}))

This family of world lines is parametrized by the asymptotic momenta in the remote past
and remote future:

dg,  [pulm A too
— 2.10)
dA pufm  A—> —o0
and similarly for 7,.
The four-vector b, is connected with the relative coordinates of both particles at 2 =0
and is related to the classical impact parameter. Finally, ¢ measures the curvature of the
world line. One can easily show that the maximum acceleration of the particle is inversely

proportional to g:

dz,
dr? -0

2m‘(p2 pl)#v__ 2.11
(itpd? @ @

== Qpla=0=

where T is the proper time.
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The S, operator can be easily evaluated with the help of the continuous Baker-
Hausdorff formula [4] or by the functional method of Hori [2], [5]. The result is:

—i f déxItg i dixdy JH(x)4 FV(x—y)JV(J’)
Ssoft =€ ‘ : 62 f ‘ > (2.].2)

where Af:,, is the Feynman propagator of the vector field:

F . d*k —ikx—y) . — Guvrkuk [1®
A,w(x y) = (27‘[)4 € m . (2.13)
Due to the current conservation d“J, = 0, the &k, term does not contribute.
If we write the Feynman function in the form:
AF(x) = A(x)+ % AM () (2.14)

we can easily see that the real part A(x) contributes a phase factor to Sz and the imaginary

part A®(x) contributes a real exponential function. Therefore the vacuum matrix element

of S

ofe Can be written in the following form:

€0]S,.5l0> = eiPlst) gt £ ATTERIHR) (2.15)

where dI"' = d3k/(27t)321/k2+/42 and J, (k) is the Fourier transform of the current J ().
In the derivation of (2.15) we have used the following relations:

1 dik .
X f dixdy Ju(#) AD(x—y)J (y) :% @)t dixdtyJu(x)e =X
. d
X O(k2—u2) R Ju(y) = % g u (k) O(R2— p?)JH(k) =
&k TR
= j G VIt |y (2.16)

Using (2.8) and (2.9) we can evaluate the Fourier transform of the current:
400 +-00

Julk) =g f dée*e+ g f dnue’*n =

(& Vo8 )

= ZgTQ |f§ bk(Pzﬂ (P1k)—P1u (sz))

V(pik) (pak)
i K, (% Viah) <q2k>) |
+e 2 (92u(91k)_91u (92]‘7)) V(————q k) T k) = 1u(k) +J. 2#(15), (2-17)
1 2

where the two parts J; and J, depend respectively on py, py, and ¢y, ¢,. The details of these
calculations are given in the Appendix A.
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The integral | dI'J;J* can be therefore divided into three parts:
[ATULL+T; T, 42 Re J1T). (2.18)

The first two parts which we shall denote respectively by I, and I, will depend only on
t = (py—p1)* = (¢1—g2)? so that:

I, = I, =Lt o). (2.19)

The interference term I;, = —2 f d I' Re J;' ], has the oscillating factor cos bkand we expect
that in view of these oscillations the contribution from b s 0 can be neglected in the first
approximation. This statement will be verified later.

3. Asymptotic large s and small t behaviour of I,

In this Section we will evaluate the I; part of (2.18). This quantity describes the inter-
action of the one particle current with itself and corresponds to the emission and absorption
of virtual vector mesons by the particle.

I, can be written as the following integral:

L=— f AITEBIR = — £ 2 f dI'((pk)pa—(po)pa)?x

K (7% VGR)@) _ & f dae [ (m sz) _
(p1k) (pok) 2m?® (27 b pik
—2p1p2] K( V(pdh) (pa (pzk)) (3.1)
where
w=VE T
We will use the rest system of p,+p,,
1= (E,p), p, = (E, —p) 3.2)

to evaluate (3.1).
After integration over the azimuthal angle we obtain:

I = n2m2 fx dx fd&[@( VEzwz—xp 0 )

E2w2'+%2P2§2
X [m2 E?0®—%*p%g° _Plpz]’ 3

where » denotes the length of the space part of the four vector & and p = |p|.
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We introduce new integration variables:

x = % VE2(%2+y2)—x2p2§2 ,  a=-=E

P
E

This transformation brings (3.3) to the following form:

_g'm? % %2 —(p%u*E?m?)
I, = ~ 2% f j dz K1(x)]/ oY) X

) 2 2[2,2
x l(O_E_/‘) w2 P1Pr 1+z2 (x i )] (3.4)
m my 1—z m
After integration over z, this integral can be expressed in the from of a single integral
over x:
o &gmr 1 % 1rp [P_ V (0*=1) (*—p*F?)
W= = o " o f ER R -
oEn
e (1 1w (PE) | o+ (p[E)+ V(*—1) (0"—p*E?) |
5 In In 3.5)
N 121 R 7 N e [ e
where
obu

In terms of the Mandelstam variable ¢, the variables p and E become:

» :]/_ %, E=Vm*—i4 (3.6)

so that for small |t} we have:

_1/_t ~ P/
pﬁl/ o Emm £ l/ i 3.7)

For small {¢| the expression (3.5) reduces to the following simple form:

o0

glt] > 0%u?
I y Yoo =—7—7 de v X— j—
1(s: Dli-o 4m2m? f 1(x)( %4 [/x2_921uz
ou
g2l - 3
=2 f dx |/ x*—g2u? Ki(x). (3.8)
ou
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The s dependence of I is contained only in the s-dependence of the curvature radius p
which is an unknown function of s:

0 = o(s). (3.9)
Since we are dealing with high energy scattering it is reasonable to assume that g is small,
so that the curvature of the world line of the particle is large near the point 4 = 0. Since

K, (x) tends very rapidly to zero for x — oo and p is small, we can take into account only
the asymptotic behaviour of Ki(x) at small x, namely:

Ky(#) ;0 ~ 2% (3.10)

If we neglect the contribution from the exponential tail of K;(x) at large x, we can approximate
the right-hand side of (3.8) in the following way:

gt|
412m?

L(s, t) w0~ — In op. (3.11)

It is seen from (3.11) that [, is linear in ¢ for emall ¢} and that its only s dependence is through
o(s). The explicit form of ¢ will be specified in Section 6 after calculating the contribution
from the interference term I[p,.

4. Asymptotic behaviour of the interference term I,

The interference term can be written as:

L= — ‘%j ¢ j dr cos (bh) K, (% V(i) ( ch)) K, (% V(@:h) (@h) ) X

(pk)(ah) (pih) <q2k>]
X [(PlCZﬂ (p_gk_) ((Izk) (Pl(h) (Pak) (qlk) N (4 1)

Since the right-hand side of (4.1) contains two sets of momenta, namely py, p, and ¢, g5,
this integral is much more difficult to evaluate than (3.1). In order to simplify the calculations
we will assume from the very beginning that || is small and therefore that p; ~ pyand ¢; ~ g,.

Fig. 2

In view of the space-like character of the impact parameter vector b,, we will assume that
by = 0. The integral I;, will be calculated in the CMS frame and the three dimensional
cartesian coordinate system will be chosen in such a way, that (Fig. 2):

P = 0,0,p:D), b =(b},0,0).
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After these simplifications the expression for I, can be reduced to:

2g%0% g
g(5:8) | pe0 ~ fn o f 5 (2;)% cos (bk) K, (%plk)Kl (%qlk). (4.2)

This integral will be calculated in spherical coordinates:

g% »2dxn
Lip(s, t) = (2n)3m2 V%2+ > sin 0d0 de cos (bx sin 0 cos @) X

x Ky (—7% (E %@+ p? —px cos 0)) K, (7% (E ]/xz-{—,uz +px cos 0)) ) 4.3)

where b = |b|, p = |p,| = |q,] and E is the single particle CMS energy. The ¢ integration
can be performed leading to the Bessel function Jy:

+1

2 ‘ o
B fngmz fl/7-52+ 2 j d§fo(b%l/1—§2)><
i

x Ky (—2%(]/; Y2+ p® — Vs—4m2 xf)) K, (2—€n-(l/s_l/ w2+ l/s——4<m2 x&)) ,
4.4)
where we have expressed CMS energy and momentum of the individual particle through
the Mandelstam invariant variable s.

The change of the integration variables which simplifies (4.4) will be presented in three
steps. The first step reads:

u

V Ry’
After this transformation the integration region is contained inside of one branch of the
hyperbola v2—u? = u?:

x=|r—p, &= (4.5)

+Vv’

I, = 4n2m2 f j duJy(b 1/1)2——-142 u2yx

—Vora

K, (2%(1/;”“ Vs—am? u)) K, (%(V?H Vmu)). (4.6)

The second change of the variables contains the hyperbolic functions:

x x
v = —coshy, u = —sinh 4.7
0 y o Snhy )
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and brings (4.6) to the form:

7 b j—
Io(s, 1) = '2';%”_2 f dy f dxx ]y (;sz’—ezﬂz) X
1] oK

X Ky (x cosh (y+6)) Ki(x cosh (y—d)), (4.8)

o 4m?
tgh 8 :]/ 1— ’Z . (4.9)

The last step in our calculations contains the transformation:

where:

cosh {y+9) = —i'COSh 9, =1 4.10)

Since 7/& <1 and cosh 6 is large, the argument of the second K, function in (4.8) can be
approximated in the following way:

&(cosh 6 cosh 26— VWW sinh 20)~

~ Ecosh & (cosh 26—sinh 28) = &e~?* cosh 4.
The right-hand side of (4.8) reduces finally to:

L, = 7/ (o), 4.11a)

ﬂ2m2

flon) = f f dnnd, ( V n2—o3u ) K, (& cosh 6) K; (§e~% cosh §). (4.11b)

The % integration can be easily performed:

£
b Y Y —
[ dnnl, (‘SV ?72—92#2) = %V £—0% Jy (? Yer—gou? ) (4.12)

on
so that:

E2__ 2,2 b j————
Slep) = % d¢ KE—E—QL Ji (E V52‘92ﬂ2 ) X

ou

x K, (& cosh 8) K{(£¢=% cosh 6). 4.13)

Assuming that ¢ and 7 = pucosh 6 = pu are small, one can show (see

4m?

Appendix B) that the function ftends to a constant when 7 tends to zero. This constant
is equal to:

lim f(o) = 2K(bu). 4.14)

-0
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For small || and large s we have therefore:

2t
Ig(s,t) = ;%n? K, (bu). (4.15)

In contrast to I, I}, does not depend on the CMS energy in the asymptotic limit. Another

possibility is that 7 is large although g is small. However, it is easy to show that f{g) tends to

zero in this case, and the interference term gives no contribution to the scattering amplitude.
The whole exponent in (2.15) can now be written as:

1 2
It sl = oI gu gt Kyl = 750 ot 2K (by] (416)

and the scattering amplitude is:

1
L+ 5 In - [In eu+2K, (bu)}

<OISsofth> =€ 2 =€ 4 mt (417)

This formula will be discussed in Section 6.

5. Production of vector mesons

In this Section we will calculate the amplitude of the inelastic z—p collision for the
production of n vector mesons. If the vector mesons were assumed to be g°-mesons we
could further calculate the production amplitude with 2n pions in the final state.

We treat the proton classically and we assume that in the remote past it is moving
along a straight line. The zz—p interaction curves the proton world line so that in the remote
future the proton is moving in a different direction than that in the remote past. We will
assume that its world line is described again by (2.9a). The #—p interaction will show up
only in the bending of this world line. Since the proton is accelerated during the interaction
with the pion, it can emit vector particles (this process is very similar to that of the brems-
strahlung). We must therefore calculate the following matrix element:

Skeys oor k) = Chyy ooy Byl S 00> =
= Cky ooy k| @7 HETR 0 (0]S, 10D, (5.1)

where J, is the single proton current:
+.00
T(x) = g [ d£,69(—8) .2)

and ky, ..., k, are on-shell momenta of the mesons. The first factor in the right-hand side of
(5.1) can be easily evaluated:

Ky ooy bl 2 @7 8505001107 = (s (), (5-3)
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where &X(k) are the polarization vectors of vector mesons. The inelastic scattering cross-
-section can now be written as:

2m)4 n
O'n == ——-——-——‘21(Sf mg’ m?’) fdrp‘dpq'dpkx e drkn6(4)(P1+q1_.P2_ql_ rzzl kr) X
X SZ' !Sn(kls cees kn)lza (5'4‘)
pln

where Y] denotes the summation over the polarizations of the vector particles in the final
spin
state and gy, g, are the momenta of the pions before and after scattering and A4 is the following

function:

Ms, m?, m?) = V(s—m2—m2)2—4mZm?. (5.5)

After performing the spin summation we obtain:

2t 1 [
Oy = '(77;’)*—7] drpzdrq‘e_h fd]’k! s dFk,.X
X 08 (py+q1--py—qa— r=21 k) El F(km), (5.6)
where:
F(k) = — T, (k)J*(k). (5.7)

For very energetic particles and soft vector mesons we can neglect the meson momenta in
the delta function. The differential cross-section (i.e. the cross-section do,[dt, where ¢ =
= (py—p,)? is the proton momentum transfer) takes the form of the Poisson distribution:

doy, a®
"~ e~ e (5.8)

However, the omission of k, in the delta function cannot be justified in our model since
the production amplitude has significant values also for the three momenta which are of
the order of magnitude of a few meson masses. Therefore, in general the Poisson distribution
does not follow from our model.

The problem of the emission of secondary particles in the eikonal approximation in
quantum field theory was also considered by Barbashov et al. [8], [9]. The authors
have calculated the cross-section of the production of n soft vector mesons in the straight-
-line path approximation and obtained the Poisson distribution for the number of vector
mesons in the final state. However, they had to introduce separately the condition of the
softness of vector mesons in the CM system. This condition is not Lorentz-invariant and
leads (for large s) to the production of hard mesons in the forward direction in the laboratory
system.
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6. Discussion

The differential cross-section for the elastic p—p scattering can be written as the product
of the hard and the soft parts of the scattering amplitude. Moreover, for small || we can
neglect the second term in (2.7). After substituting (4.17) into (2.7) the differential cross-
-section can be finally expressed as:

g
do <%%)hard§<05580ﬁ20>12 = (%;)harde o
Since g is small, in the first approximation we can neglect the interference term 2K(bu)
(¢f. the argument given at the end of Section 2).

Similarly as in the pure classical case the impact parameter will be a funetion of the
momentum transfer. Since we are interested only in the small angle scaitering, the impact
parameter must be considerably large. We can assume that b is of the order of the Compton
wave length of the proton, so that both protons interact between themselves only on the
boundary of their interaction region and the trajectories of the protons cannot change
significantly. If we assume that the exchanged vector meson is % then bu~pu/m ~ 0.83.
Since the interaction range is finite, b must be finite as ¢ — 0. The function b(¢) should
be continuous and therefore its derivative b'(t) should be finite. We can in general assume
that b(z) is a smooth function of ¢ (at least for small #} and that it can be expanded in the
power series around ¢ == 0:

[In ep+2Ko(bu)]

== 6.1)

b(t) = A+Bt-+... (4, B > 0). (6.2)

This type of t dependence can be verified in the case of classical relativistic potential scattering
in the CMS frame. (However, in the pure classical case b is also a function of the energy
and for small ¢ and large s it has the form: b ~ A(s+1[2s).)

If we expand Ky(by) in (5.1) into a power series in ¢ around ¢ = 0 (bu = ufm), we
see that the second term in (5.2) contributes a 2 term to the exponent and can be therefore
neglected.

Let us assume that the's dependence of the curvature radius g is of the following form:

0(s) = s~ (6.3)

This formula is consistent with our previous assumption that g is small for very high energy.
Using (6.3) and neglecting terms quadratic in ¢ we see that (6.1) can be reduced to the Regge
model form with straight line trajectories:

do do s \Ei
2 (%2 SN 6.4
dt (dt )hatd(so) ( )
Since t is negative in the s channel, the resulting scattering cross-section (6.4) decreases
exponentially with increasing ¢, Moreover, do/dt decreases with increasing s at fixed ¢
(shrinkage of the diffraction peak). We see therefore that this semiclassical model explains

both characteristic features of the differential cross-section for the elastic p—p scattering
at large energies and small angles.
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For large values of the momentum transfer ¢ the second term in (2.7) cannot be neglected.
It follows that in this case not only the functions I; and I, but also the phases ¢(s, £) and
@(s, u) contribute to the amplitude. The integral representation of I, is known for arbitrary
momentum transfer and therefore we can find the form of I, as a function of ¢. Since the
lower integration limit in (3.5):

ekp _ oot s
= VmZ—1[4 (6.5)
is small for every ¢, we claim that only the behaviour of K, (x) at small x is significant. After
separating the leading term (i.e. the term containing large quantity In gu and that contributing
to the large |t| behaviour of I}) from (3.5) we obtain:

2 | 2__ 2 _
L 8 (1_ gmi—t _ Vim t+V_f)ln () —
o Vi(e—4m?)  Vam*—i —)/—1
2__ 2 2 e
— gu In 4m 5 ! In V4m Z—H/_tJ . 6.6)
Vi(t—am?) ~ 4m AmP—t —)/—¢

Let us notice that the expression in the round brackets is equal to the infrared divergent
part of the vertex function with two external fermion lines in quantum electrodynamics.
This result is not surprising since our method is closely related to the Bloch-Nordsieck
method of treating infrared divergences. This for of I, is also consistent with the form of
the eikonal scattering amplitude obtained by Fried and Gaisser [10].

However, we cannot say anything about the shape of I} and ¢ as functions of ¢ for
arbitrary values of this variable.

A model similar to ours has been considered by Torgersson [3] for straight-line
particle trajectories:

§y = (}‘7 0, %bv |p1|}“/m)7 Nu = (2'7 0, "'%b’ —Ipzllfm) (67)
The corresponding scattering amplitude is then equal to:

1 2
_i-Z —+—v—K.,(b,‘)

QOS,4l0>=¢e 2 ¥ , (6-8)
where v is the particle velocity. This expression is consistent with the result of summing
up the multiphoton exchange amplitudes in quantum electrodynamics (Fig. 3) considered
by Wu and Cheng [6] and Ma and Chang [7].

In the Torgersson model the exponent of the formula (2.15) is purely imaginary and the
contributions from the f d*xd%y J, A"+ J, terms are divergent. They are removed by a renor-
malization procedure. In our model these divergent terms are contained in the phase ¢;
their divergences can be removed by a similar method. Since the straight line interference
terms describe the high energy contribution from the multiphoton exchange diagrams,
it would be interesting to check whether one can choose the particle trajectory in such
a way that the resulting amplitude will be consistent with the high energy behaviour of the
radiative corrections to the diagrams in Fig. 3.
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The problem of high energy inelastic hadron collisions in the bremsstrahlung approxi-
mation has been investigated by several authors [11], [12], {13]. However, all these papers
deal with the multiple production of scalar or pseudoscalar mesons in the ““sudden approxi-
mation”. In this approximation the four-momentum of the nucleon is not continuous at

Fig. 3

A =0, where A is the parameter of the world line. Bialas and Ruijgrok [14] use the
coherent state as the final state of the produced mesons. Their results show that the distribu-
tion of the number of produced mesons is narrowed in comparison with the Poisson distri-
bution. Similarly as in the present model, the Poisson distribution can be obtained only
after neglecting the conservation laws expressed by the delta function in the formula for
the cross-section. In the ‘‘sudden approximation’ the integral I; = — f arj :J" is divergent
and therefore this method cannot be applied in our model. One could, however, introduce
the meson momentum cut-off but this procedure is not Lorentz invariant.

To summarize: the particle world line in the semiclassical approximation in quantum
field theory can be chosen in such a way that the final form of the elastic cross-section is
consistent with the Regge model and with the experimental data on elastic p—p scattering
at large energy and small momentum transfer. In particular, such a semiclassical model
accounts for the rapid fall-off of the differential cross-section at small ¢ and large s and for
the shrinkage of the diffraction peak. On the other hand, for a straight line particle trajectory
(or for momentum transfer equal to zero) the final result is consistent with the sum of the
infinite set of multiphoton exchange diagrams in quantum electrodynamics.

APPENDIX A

In this Section we will calculate the Fourier transform of the current .]'”(x). After
substituting (2.9a) into

TPk =g Zjdé,,e‘kf (A1)
we obtain:
. bk oo X P+ -
T —ge f da (EP;T + %%)”ék R0} (A.2)
where:

py=p1+ps fA)=Ve® + 22



Expression (A.2) can be written in the following form:

ok ~+o0
! ) 1 +in
J,(; )(k) = ge ° f dl,gﬁemwl, nf0)
bk P35
i - 1 d
2 Pon ingAtin f (),
+ge "[‘ di om im (im-. f)g A
— 00
where:
— Pk
=T om

After integration by parts we obtain:

-+ 00

. Bk
Jf,l’(k):?g;n—e‘ 3 (p+_ﬁp_) f dAeimeArinf(A) —
#

—_—0

-+ 00

2m,

b
_ _ &+ ’ (P+ - L—_) i :9 f _d}; gisAtin f(3),

S

il S

Ty g

The introduction of the new integration variable:
A =psinh p

brings {A.4) to the following form:

T4 TT—

](1)(]‘:) gn+ i ( P+ &_) _]L"__a_é_:,l__ f d?pe"? V,,;..,,’_ sinh (y,_;_q,),
u _
—c0

where:

sinh ¢ =

After shifting the integration variable we obtain:

n‘><k>=i‘f$( - ) Ky loVati—aE) =

k

— —2igo (»P—+ - —P;) S ﬁiﬁﬂ— ( V(psH) (pak) <p2k))

p+k p-k

177

(A.3)

(A4)

(A.5)

(A.6)

Formula (A.6) gives exactly the first term on the right-hand side of (2.17). The second term,

J®(k), can be obtained in a similar way.
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APPENDIX B
In this Section we will prove the formula (4.14). Substituting into (4.13) the new inte-
gration variable:
z =& cosh 6

we obtain:

fo =55 f L ymay, (%" VzZ—ﬂ)Kl(z)Kl(ze—“), (B.1)

where:

T = ppcosh 0.

Since 7 is small for high s, the main contribution to f{p) comes from the small z region
and we can replace K;(z) by 2=, The replacement of K, (z) by =1 does not change the oscillating
character of the integrand and does not destroy the convergence of the integral. On the
other hand one can show that the contribution to f{g) from large values of # is negligible in
comparison with the contribution from small z. Therefore, f{p) can be approximated by:

626 dZ e b e
o= 5y [ e (). (B2)
After introducing the new integration variable:
TX = l/zz'ﬁ

we obtain:

o

. 4 %2
im0 = f x5 Jilbus) = 2K o). (B.3)
This is the formula (4.14).
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