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ON THE ENERGY OF A STATIONARY SYSTEM IN A GENERAL
FIELD THEORY

By G. S. HaLL
School of Mathematics, the University of Newcastle upon Tyne*
{ Received March 29, 1971)

Tolman’s theorem concerning the expression for the energy of a stationary system
in General Relativity, in terms of the Einstein canonical energy-momentum complex, is
extended so as to apply to a general class of field theories. The general result is then criticised
and a remedy is given which results quite naturally in an infinite number of different energy-
-momentum complexes. One of these complexes might reasonably be called *“‘canonical”
and for the special case of General Relativity, this “‘canonical” complex turns out to be the
one proposed by Moller.

1. Introduction

The energy of a stationary system has been much discussed in the literature [1], [2], [3]
and here we will reconsider the problem within the context of Tolman’s theorem [2].
This theorem states that in General Relativity, given the asymptotic form of the metric,
the expression for the energy of a stationary system in terms of the canonical energy-
-momentum complex can be expressed as a volume integral extending only over the part
of the volume actually occupied by the sources of the field. It is proposed here to discuss
a generalisation of this theorem to a general field theory supposed derivable from a Lagran-
gian. Tolman’s theorem is easily generalized, but the physical content of his result (and
it’s generalization) is criticised. It turns out that it is possible to eliminate such criticisms
by a simple procedure, and that this procedure leads quite naturally to an infinite number
of new energy-momentum complexes. One of these complexes might reasonably be called
“canonical” and this particular “canonical” complex, for the case of General Relativity,
turns out to be the complex discovered by Moller. By construction, the other energy-
-momentum-complexes have properties similar to the Moller complex.

We will begin by introducing the general formalism to be used, and essentially we
shall follow Bergmann [4].
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2. The general formalism

We will consider a field theory with field variables ¥, (where the “4” denotes any
number of indices of any type). For our purposes we will take ¥, to be a tensor. The
field equations for ¥, are derivable from an action principle with Lagrangian #:!

4=0 A= {[Z%d} £ =2L¥,%,.) 2.1)
Q2

for arbitrary variations 6 ¥ , which vanish on the surface S of the arbitrary four-dimensional
region €. We shall not suppose & an invariant density, but the existence of an invariant
density (which in general will contain ¥, and its first and second derivatives) differing
from % by only an ordinary divergence will be assumed. It will be supposed further that ¥
behaves as an invariant density under linear transformations. The field equations from
(2.1) are:

qdeirn 0F 0% 0¥
- oY,

= = 0 [= KP* in the presence of sources]. 2.2
o¥, o, ),M [ P ] (2.2)

The identities and conservation laws can be obtained by considering the effect of
an infinitesimal transformation:

¥ = x*+&¥(&* arbitrary infinitesimal functions of x%). (2.3)
In fact from (2.3) we have:
0¥, =V ,(N)-P (N = FRWp6i— Y, ,6° (2.4)

where Fj, are constants dependant on the transformation properties of ¥,. A simple
calculation based on Noether’s theorem then yields the usual identities and conservation
laws [5]. In particular we have the strong conservation law [4] which we will take in the
form:2

v » —1 ag v 1 By pA
Hﬂ’v =0 0# = E’l— —a—lfl:*” ‘PA,”—(SMQ + ;[FA,uP 'IIB. (25)

The first equation in (2.5) then implies the existence of a quantity k;’f such that;
VA Av L A ¥
K= -k 0, =h, (2.6)
Now since & is an invariant density under lingar transformations a simple application

of Noether’s theorem, in which we take &* in (2.3) as a linear function of x*, yields:

-1/ 8%

1 A comma denotes a partial derivative. Greek indices run 0,1, 2,3, whilst small Latin indices
run 1, 2, 3.

2 Here 7 is a normalization constant which is determined when 6; is given explicitly for a particular
theory.
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In general of course we can find an infinite number of quantities &} such that:

0, =br 0., =0br =0 (2.8)

Some of the “‘superpotentials” ;! will possess anti-symmetry in v and A and some will
not. We will call the “superpotential” S/ the *‘canonical superpotential” and the complex
¢, the (usual) canonical energy-momentum complex. For our expression for the energy
we will take:

—FBopiy 1 [/ 0%
E=— jeng - H—ﬁ’——B + ( ) g)} av (2.9)
n Kn\o¥,,

v vV

where ¥ is the hypersurface x° = constant.

3. The generalized Tolman theorem

We will now consider those field theories whose Lagrangians satisfy the “homoge-
neity” condition:

d Y, + d ¥ PZ (P tant) 3.1
= a non-zero constant). .
ov, T ew,, ™ '
Then (3.1) and (2.2) give
4 oZ
LY, —P% = — | —Y¥,] . 3.2)
("PA,# S

If we now, use (3.2) (2.2) and (2.9) we find:

FlePiy, Piy, 1 0% 1 0¥
E= - dV+ |{———W¥y0— —| = — a4 ) rdV (3.3)
n Pn nK 0¥, = nKP\o¥,, "
b7 V

1 4

where V is that part of the volume ¥ in which P4 # 0. If we now assume that the system
is stationary and that the asymptotic form of the field variables ¥, is known then we
can calculate E from (2.7) by Gauss’ law (using ¥4 = 0);

1 [ 0% L (o2 .,
E= |— FPw, ) av= | — Flow, \ds (3.4)
0V, . Kn \ 3¥,,
1 4 S

where S is the 2-surface at infinity, surrounding V. Again since ¥, , = 0 we can write
the final term of (3.3) as:

1 oF 1 [/ o6&
——— ¥, ) dV = —— ¥, }1dS (3.5
KPn 0¥ 4.4 a KPn J\ 0¥, ,
v s

and in general evaluate it by using the asymptotic form of ¥ ,. We now chose a specific
reference frame K in which ¥, , = 0 and the integrals (3.4) and (3.5) converge, and in
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which E # 0. Then using the result of (3.4) we may evaluate (3.5) by comparison with
(3.4) in the form:

! nd Y, 1dS = N.E- 3
nkp J\o¥,, “) " K @9
where Ny is a constant depending only on the frame K.* Equation (3.3) now reads:
—F40P*¥, —P4Y
E(1+Ny) = H Ao” "B 4 } av. 3.7
n Pn
&

Then if (1+Ng) # 0, equation (3.7) is the generalization of Tolman’s theorem giving
the energy as an integral over V only.

In discussing the content of this theorem one can only say that any significance it
has seems to be mathematical rather than physical. Although convenient for calculations,
(3.7) says nothing about the energy distribution. It does not of course follow from (3.7)
that all the energy E of the stationary system under discussion lies inside ¥ [6]. What the
theorem does is to show that any contribution to E not directly expressible as an integral
over ¥ can be reduced by Gauss’ law to an integral over the 2-surface at infinity and then
evaluated, using the asymptotic form of ¥, in terms of E. We are however restricted
to coordinate systems in which not only ¥, o = O but also ones in which (3.4) and (3.5)
converge, with E # 0. It would be thus of value to find an energy-momentum complex
such that the corresponding energy could be written immediately as an integral over V.
That is we seek a complex M, such that:

M, =0 —fMav = — [ MydV = E (3.8

v 1%
(where E is the value of — j@gd V in the frame K) for all frames in which ¥, 4 == 0. Then
if ¥ is finite, E will in general converge for all such frames. Further with such an M;

more definite statements concerning energy distribution might be made. Fortunately such
an expression is easy to construct — wemerely use (2.2), (3.2), (3.3) and (3.6) to write

1 _FBOPA ['4 1 A% 1 oL
E- Ag B P, -2 )+ — 1y, av (3.9
(1+Ny) n nK \ 0¥ 4,0 nPRNOE ™o
v

and then consider the integrand as the (0, 0) component of the complex

, -1 [ FZpiy 1 [ o2 ) 1 1 o
N} = P = ,,-82 ) - —&— wal |-
(1+Ny) n nkK \3¥,, nP “\K ¥, "),

3.10)

3 Since N depends on surface integrals at infinity, only the asymptotic form of the field and hence
reference system is important and so one need not, in general, specify a particular frame but rather a class
of frames such that the transformation of coordinates from one member of this class to another is asympto-
tically the identity transformation and that in each member of the class y 0 = 0.
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-1 1 8%
We then find that N, , =

¥ A) - Hence if we define M, by:
A

B 7 pP(1+Ng) \ K 0¥,
1 FB pAy 1 [ 0%
M’ = B Y, -5 ) -
“ (1+Ng) n nK \o¥,, —""—"*
1{5”<1 6.?3{/) (1 63’¥l)}] 3.11)
nP | *\ K é6¥,, ‘), K ov,, “), ’

then we are assured that MS = N and that (3.8) is satisfied for a stationary system. Even
if Ny is unknown, (3.11) determines M, to within a constant factor, the quantity Ny
being determined when the frame satisfying the condition in (3.6) is selected.

4. Alternative procedure

In some cases an alternative procedure is available. Suppose ¥, is a tensor with U
upper indices and L lower indices ¥, — ¥%-f. Then we have from (2.4):
35l = Wi i) ~ Wi @) + ¥ IR — ¥ ()
ox*  oxP oxt ox"
ax" T ox® ox* T ox”

x* ax* A i
= (05+E%) ... i (8, — &) ... etc. we can express (4.1)

= VIS )+ P

H..v50

@4.1)

Now from (2.3) we have

xd’

in the form (2.4) namely:

5 B 7...h... )
5‘11.35; - _‘I’:...f,eéee+Fg..61?...£x:lq’g..;éam
T, Ag..f __ ST 1 T Ash om
Fodebe — v 548 SEET 4 . +0F .. 8Y .. 5. 8188T —
T T ST 4 A
8L G5 BT — . —8E .. 88 8 .. 86T

Then
Fyiaete = (U=L)O; ... &} ... 85... ),
and then we easily find:
Fyombope? = (U-L)Ye-d, (4.2)
On returning to (2.7) we now find using (4.2);
-1/ 0% -1/ o0&
0 = Sﬁ‘z =— —-—~~Ff§ V) = — 1 ——¢¥, 4.3)
> nK 6Y’A,l SA K alIIA,l sA

U-L
where we have put ¢ = (———-> In particular, if U = L, 6§ = 0. If we now consider the
n

cases where U = L (¢ = 0) and return to the equation (2.9), making use of (3.2), (2.2)
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and (4.3), we can rewrite it in the form:

—FPpPiy, —piy, 1 0% o~
E J AVt [{———— ¥ ELav. 4.4
_{{ n nP nK 0¥ ,, a0t gnP @4

v v

Then we can use the expression E = — j 63dV to rewrite (4.4) as:
1 —Fiply, Py,
E{l+-—]= < - dv.
( enP) J{ n nP *
v

~+ 1 q/ +9a dl; 45
nkK 0¥, 40T Ta . (*-3)

We now consider the integrals {62dV and (3.4). We chose a frame K in which these
integrals converge and in which E' # 0,¥, , = 0, and then in this frame we define a constant
My by:

1

—— | 0%dV = MLE. (4.6)
enP
1 4
In this frame then (4.5) and (4.6) yield:
1 —FPPAY,  Piy,

Ef(1l —~ My )= 2 - dv 4.7
( * enP K) J{ n nP @7

v

1
which if (1 + P M K) # 0 recovers Tolman’s theorem. We now continue as before,
en

using firstly (2.2), (2.6), (3.2) and (4.3) to write;
Py, £ ba
nP nK  nPe
and then (4.5), (4.6) and (4.8) to give:

1 —Fhopiy, 1 [ o8& -1
E= Sk LR ST il T Bt av.
( 1 > f { n nK \0¥,, 40 enP

I+ —~ M,
enP (4.9)

(4.8)

We can here consider the integrand of (4.9) as the (0, 0) component of the complex:
-1 FoPAy, 1 oL

1 n nK \o¥,,

1+ — - M, ’
enP

-N, = — TA,”—(SL.?) +

1 .
+ poy 5ubgf5:l.
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b
We then find N}, = =bu and if we define M}, by:

1
Pli4+ — — M
o ( enP K)

M 1 FiP'¥y, 1 (0% v 5o
“o 1 n nK\o¥,, ** ¥ +
1+ — — My

+ L @b, — b, )} (4.10)

then M satisfies M = N§ and (3.8) for a stationary system. Further having selected
a suitable frame K in which the conditions of (3.6) hold, then with the M, evaluated in
the frame K have in K:

E= —[03dV = — [ MJdV = — [ Mgdv. 4.11)
v |4 v

Again, even if M is unknown, (4.10) determines M, to within a constant factor for a given
“superpotential” b}?. Thus we have constructed an infinite number of complexes M,
(when ¢ # 0), each one satisfying (3.8). The above procedure is invalidated when & = 0,
and in this case we must return to the method of Section 3.

Since the complex (3.11) is constructed directly from the variational principle without
the introduction of arbitrary elements ((3.11) is uniquely determined whereas (4.10) leads
to an infinite number of such quantities) we can in some sense consider the M, of (3.11)
“‘canonical”. We now give an application of the theory.

5. Application to General Relativity

If we translate the above formalism into that of General Relativity, we have ¥, — g,
L - PE where £F is the Einstein Lagrangian:

-G e

where g = det (g,,,) and {” } are the usual Christoffel symbols. Also L4 — \/ --_gG

A
e T”,, == .7 , where G, , T, are the Einstein tensor and matter tensor respective-
ly, and P= -1, K= —y (where x is the Einstein gravitational constant). Then we
have:
Fi2 — Flg2 = §[04080, + 020304 + 6,0804 +020467). (5.2)

We then must choose » = 2 so as to make our §j, coincide with the usual canonical complex
in General Relativity:

0 =9 + L (927 -3 PE . 5.3)
“ u 2){ ag:zﬂg (
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The “canonical” superpotential S:,‘ is the is the Tolman expression, [2], [1] and the
“usual” choice of anti-symmetric superpotential h;"is the Freud expression [7]:

N 1 oLE -

s = g° Bl = —= (&) (g’ -"e"), (54
u g,‘ﬁ “ 2 \/—-g 5B )
Now it can be shown that [1]:
1 _ S
Si-hl = 3 0 —g g~ (V=g gl (5.5
It follows from (5.5) that S% = A% and then (5.2) gives:
-1/ 8% v oFr @) _ 57— pe 5.6)
- N = = ]
K 5TA,1J 4 Iy agaﬂ g WM il e
Then from (3.11), (5.4) and (5.6) if follows that:
gV l agE » E av
M, =2{7,+ E;? -6 - gh—8% (5 B—hZ) 6.7
where in obtaining (5.7) we have evaluated Ny for “asymptotically Galileian coordinates”;
obtaining N = — 4. The quantity M, is clearly the Moller energy-momentum complex [1].

We note that since we have ¢ # 0 we could have used the method of Section 4. In fact
if we put &} = £} in (4.10) we obtain M}, as in (5.7), provided we evaluate M) in “asymp-
totically Galileian coordinates™, (obtaining M, = 0 4.

In his original paper, Tolman [2] indirectly obtained Ny = —% and his result now
reads (from (3.7) or (4.7)):

j —T5—-TJav. (5.8)

The expression (5.8) was first given by Nordstrom [8] but some doubt has been cast upon
his proof [2]. A derivation of (5.8) differing from that of Tolman has been given by Pa-
papetrou [9].

6. Conclusion

We have constructed an infinite number of energy-momentum complexes all satisfying
(3.8). Of this infinite set, the one which may reasonably be called canonical turns out to
be- the Moller complex. These complexes arise naturally in an attempt to remedy the
above mentioned criticism of Tolman’s theorem. All of the constructed complexes M,
agree for the energy of a stationary system in all frames where ¥, o = 0, and agree with
the energy constructed from 6, in the class of frames satisfying the conditions (3.6). The

4 It is worthwhile to point out that in his original paper, Moller [1] constructed M; at first to within
a constant factor, this factor being determined when Moller equated —-_fM: dV and —j@g dV for asymptot-
ically Galileian coordinates. This ties up with the fact that the constant factors in (3.11) and (4.10) are
determined when My and N are given.
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1
interpretation (if any) of the conditions (1+Nyg) # 0, (1 + i M K) # 0,is not clear.
&n

As seen above they are satisfied in General Relativity, in an “asymptotically Galileian
frame”.
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C. Gilbert. He also gratefully acknowledges a Science Research Council Studentship.
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