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Instead of describing the scattering processes in terms of asymptotic fields at minus
infinity and plus infinity in time, we express them in terms of ingoing and outgoing (concen-
tric and excentric) waves from and to infinity in space. This involves a quite different bound-
ary problem as compared to the traditional initial-condition-problem. The system consi-
sting of fields streaming in (out) from (to) spatial infinity is not a well isolated physical
system, hence a description in terms of a state obeying a Schrddinger equation is not appli-
cable. The scattering problem is soluble in the Heisenberg Picture whereby the necessary
boundary informations concern the ingoing fields crossing the surface of the domain. This
type of information is subject to an uncertainty relation between energy and time.

1. Introduction

In the parts I and II the traditional approach to the scattering problems by means
of an S-matrix derivable from the quantum field theory, was criticised [1]. In order to
see that the traditional approach is, from the very starting point, incorrect and incompatible
with the principles of quantum theory, it is enough to discuss the simplest case of inter-
action-free systems (fields). In this case every traditional S-operator formalism yields
a unit operator § = 1 and this was regarded as an obvious and correct result with the
explanation that in the interaction-free case ‘“‘nothing happens” because there is no scattering
at all. But is it really so? If the initial state at a remote past consists in some wave packets
then these packets undergo, in general, a change and, in the course of time, become more
and more smeared out so that the final state at a far distant future is by no means identical
with the initial state. The operator describing the spontaneous dissolving of wave packets
in the course of time is, according to quantum theory, obviously exp iHy(t, —1t,) where H,
denotes the interaction-free Hamiltonian. If one tries to perform the limit transitions
ty &> —oo, 1, - 00, one does not get as a results a unit operator (as suggested by the
S-matrix formalism) but the limit transition simply does not exist.

From the above discussion it does not follow that in the framework of quantum
field theory no scattering matrix can be defined and transitions between asymptotic states
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cannot be computed at all. The above discussion only shows that the traditional approach
to scattering problems in terms of asymptotic states defined for ¢ — + oo was particularly
clumsy and that the scattering problem should be reformulated and expressed in more
physical terms. We have to reject the concept of asymptotic states at #— =+ oo as inadequate
and replace them by a description of the scattering process in terms of stationary concentric
waves coming in from spatial infinity and excentric ones spreading out towards spatial
infinity.

2. Scattering of classical waves

In classical field theory it is possible to replace the usual initial conditions! for the
whole space at ¢t = 7, by another type of initial-boundary conditions determining uniquely
the solution in a finite volume ¥ and in an arbitrary time interval. Namely, it is possible
to assume the usual initial conditions at ¢ = 1, in a finite domain ¥ and to prescribe, as
a boundary condition, the flux of the field through the surface elements of ¥V into its in-
terior for t > ¢,. From a four-dimensional point of view, we have to do with a boundary
problem on a three-dimensional hypersurface consisting of a space-like part X, and a cy-
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lindrical timelike hypersurface Z, (Fig. 1). The information about the initial values of the
field at X, together with the information about the flux of the field from the exterior
through Z, into the interior of the cylinder determines the solution in it. Consequently,
also the flux of the field streaming out of the interior of the cylinder will be determined.

The initial hypersurface Z; may be shifted towards minus (or plus) infinity. Assuming
for t, - — oo a vacuum state of the field in the domain V, the field equations determine
the solution in ¥ for any ¢ provided the ingoing waves through the boundary of V are
given (for any ?). Thus, it is possible to determine the field uniquely in the interior of the
cylinder extending from — oo to oc. In this case the solution is given in the form of re-

1 Initial conditions are usually supplemented by the requirement of vacuum at infinity, /. e. of a suf-
ficiently rapid decrease of the field for points going off to infinity in space-like directions so that the total
flux through an infinitely remote surface vanishes and the system may be regarded as closed.



191

tarded potentials. If, on the other hand, the field would satisfy the condition of becoming
a vacuum in ¥ for 1 — oo, the solution would be given in the form of advanced potentials.

Inasmuch as the field equations supplemented by prescribing the waves ingoing ‘nto
the domain ¥ (together with the additional information that initially there was vacuum)
determine the solution uniquely, we may compute the outgoing part of the field (from
the knowledge of the ingoing waves crossing the boundary).

If a real scalar field ¢ is scattered by an external scatterer of a small extension (or by
an external short ranged potential) we may assume the domain ¥ to be a sphere with
a large radius R with the target situated at its centre. The waves ingoing and outgoing
across the surface of the sphere may be represented asymptotically in the form

@ = ¢in+¢0ut (1)
where
in 1 i(kr+ wt) ’
Pr = [k, 8, p)e +c.c. 1
k>0
and
out 1 i(kr —oot) 1
¢ = g(k, 3, p)e +ec. an”
k>0

with @ = \/ k?+m?2. The outgoing waves result in consequence of both the spontaneous
spread out of the ingoing waves and their interaction with the scatterer. With the know-
ledge of the ingoing waves the field may be computed from the field equation in the whole
domain V. Consequently, the outgoing part of the field will be also determined.

If, on the other hand, we have to do with the problem of two colliding wave packets
propagating along, say, the z-axis we may, more conveniently, choose the domain accord-
ing to the symmetry of the problem: take a very long cylinder (Fig. 2) and use cylindrical
coordinates g, @, z. The ingoing waves come from minus and plus infinity along the
z-axis and their initial intensity at z = +Z may be assumed to be different from zero
only in the immediate neighbourhood of the z-axis {p € R). If the length of the cylinder
is very large (Z > R) the outgoing waves are, practically, only those crossing the cylindrical
surface S. The asymptotic outgoing wave may be assumed to be of the form

1 i .
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at the cylindrical surface ¢ = R where

o = VkZ+k2 +m?. )

With the knowledge of the ingoing waves the outgoing waves (the function g) may be
computed. It may be assumed that the intensity of the ingoing waves is small and con-
stant in time. Then we have to do with a stationary scattering process: the flux across the
cylindrical surface ¢ = R will also be constant in time (if averaged over z ~ 1/m).
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3. The scattering problem in quantum field theory

For reasons of correspondence between classical and quantum theories it must be
possible to formulate the scattering problem in a similar way also in quantum field theory.
However, trying to formulate the quantum analogue of the above described classical
problem we are faced with a situation never yet considered in quantum theories. Hitherto
the states were referred exclusively to space-like hypersurfaces. However, the problem of
determining the state at an arbitrary space-like hypersurface if the state at X, is given,
is not a pure initial-condition problem because the concept of the state applies to isolated
physical systems which means (among others) the fact that the system is localised in a
finite region beyond which there is vacuum. Thus, the traditional problem of initial condi-
tions is, in fact, a mixed problem of initial and boundary conditions which may be pictured
with the help of Fig. 1 as follows: Besides the information about the state at X, there is
an additional information about the system, viz. that there is no flux of the field across
the cylindrical part X, of the boundary. The hypersurface Z, was (tacitly) removed to in-
finity and the requirement of a vanishing flux across it was replaced by the requirement
that the state of the field sufficiently quickly approaches a vacuum state for points going
off to infinity is space-like directions so as to avoid any streaming of energy, momentum,
angular momentum and charge, to or from infinity.

On the other hand, the initial-boundary problem for scattering phenomena is quite
different: contrary to the assumption of the absence of a flux across X, (or of a vacuum
at space-like infinity) we have to admit that there is, indeed, a flux of ingoing and outgoing
waves across X, whereby, in order to determine the field in the whole interior of the do-
main pictured in Fig. 1, it is necessary and sufficient to specify (besides the initial state
at Z,) the ingoing part of the field at Z,. The state at Z, is specified, as usually, by pointing
out the eigenvalues of a complete set of observables at X, whereas at the time-like part
of the boundary X, we need to prescribe the eigenvalues of an incomplete set of observ-
ables: only the numbers and detailed characteristics of the ingoing particles. The informa-
tion about the numbers of outgoing particles is not dynamically independent of the former
but is determined by the dynamics of the physical system.

In connection with the above-described situation there appears the following problem:
how is it possible that measurements determining the number and detailed characteristics
of particles ingoing into the 3-dimensional domain V through its surface S do not interfere
with each other inasmuch as, obviously, they constitute a set of measurements at a time-
-like hypersurface? First of all let us recall that measurements of two events situated one
inside the light cone of the other need not necessarily disturb each other. The question
whether they do or do not disturb each other depends upon the type of measurements to
be performed.?

It is intuitively clear that a measurement aiming at a determination of the numbers
and detailed characteristics of the ingoing particles but yielding no information about

2 In particular, two subsequent measurements of the same set of observables performed soon one
after the other do not disturb each other and have the character of measurements only confirming the
previous results according to the axiom of reproducibility of measurements.
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w hen the respective particles cross the surface of the domain V, is possible without running
into an internal contradiction because in this case the problem of a mutual disturbance of
different acts of measurements performed at different time instances does not appear at
all. A contradiction could only emerge if we tried to determine the temporal details of
the process of streaming in (or out) of particles across the surface. A state where any
information concerning the question w hen this or that particle crosses the surface is lack-
ing, denotes a stationary state with well defined energies of the respective particles.

Now, it is not difficult to guess that it is also possible to obtain some information
about the temporal details of the streaming in (or out) of particles at the cost of a loss of
information about their energies. Thus, an uncertainty relation between time and energy
(whose existance was suspected since the days of birth of quantum mechanics) appears,
at last, in a concrete shape: it is connected with the problem of measurements on time-
-like hypersurfaces: Only these informations about particles crossing the cylindrical hyper-
surface X, (whose normal is space-like) are attainable for which

AE - At > 1 3)

where AE means the inexactitude of the energy of the incoming (outgoing) particle and At
the inexactitude of the time instant when the particle crosses the surface of the domain
in question.

A relation between the ingoing and outgoing fields cannot be obtained from the
Schrodinger equation because the latter is only applicable to isolated physical systems
whereas the field in the interior of ¥ does not constitute a closed system i. e. is not isolated
from that in the exterior of V. Nevertheless, the operators describing the ingoing and out-
going waves must be related by a unitary transformation

(poul — S(pinS_l (4)

provided no other sources of the outgoing waves are present except for the mutual inter-
action and diffraction of the ingoing wave packets. The S-operator should be independent
of any particular assumptions about what actually happened at the boundary. But, of
course, the S-operator will be most conveniently computed if the scattering process is
stationary.

The operator S defined by (4) is an analogue of the traditional S-operator but, in
view of a different definition of the ingoing and outgoing fields, it is not identical with
the traditional operator (1). In the traditional approach the scattering operator mapped
the whole Hilbert space upon itself. Now, inasmuch as ¢ and ¢°* span two different
subspaces of the Hilbert space, the S-operator maps one of them upon the other.
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