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Problems related with the field-theoretic description of unstable particles are studied.
The Lee model is introduced with the V-particle replaced by a general unstable elementary
object with continuous mass spectrum. The model is completely solved in the lowest NG
sector. The analytic continuation on the second Riemann sheet of the scattering amplitudes
and the analytically continued unitarity condition are considered.

The derivation of the reduction formula with complex mass shell is presented. Finally
the equivalence is shown of this model in N6 sector with the conventional Lee model with
four-leg direct interaction.

1. Introduction

In quantum field theory there are two different ways of introducing unstable particles
as primary objects:

a) The method due to Peierls [1}, based on the notion of complex mass shell, defined
by the following restriction on the analytically continued values of the four-momentum p,:

pu" =pi—p*=M2= MZ—il, [ >0. (1.1)

Such a formulation leads to the definition of a propagator of unstable particle by means
of a complex pole on the second Riemann sheet. In particular, in group-theoretic language,
unstable particles are described by irreducible, nonunitary representations of the Poincare
group {2-3], corresponding to the complex eigenvalues of the four-momentum p,,, satisfy-
ing the condition (1.1).

b) Another method, introducing more general unstable elementary objects, identifies
the notion of the propagator for free unstable object with the generalized free field [4-5].
This way of introducing unstable particles has been advocated in the late fifties by Schwin-
ger [6] and Matthews and Salam [7]. In particular, the notion of the mass shell for free
unstable objects is defined as follows [8]:

pr=xr mi<kr<md (1.2)
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i. e. the mass-shell extends over the four-dimensional domain of the momentum space,
contained between two hyperboloids p? = m} and p? = m3. The interval [m?, m2] describes
the mass spectrum of the unstable elementary object. According to group theory the free,
unstable objects can be defined as the multiplicity-free reducible unitary representations
of the Poincare group [9].

The propagator of the free unstable elementary object @,(x) is given by the for-

mula’
J X X 1 1 - 2 2 c 2
OT#o(3)00(~3)y 0 =1 J A1 (k) Ax; 1) (1.3)
where o(n?) is a continuous positive measure, which can be normalized as follows:
[ o(x*)dr* = 1. (1.9

Such a way of description is much more general than the one, using the notion of a complex
pole on the unphysical sheet. Indeed, in order to get exactly a single complex pole, one
should introduce the following spectral function in (1.3):

P 1 r
opa(K7) = 2 (MO (1.5)
and extend the integration over all positive and negative values of squared masses k2.
This last requirement, violating the spectral condition, reflects one of the basic difficulties
with Peierl’s approach — the fact that the notion of free unstable particle introduced
on the complex mass shell violates general principles of QFT? We can only conclude,
therefore, that the description by a complex pole is an approximate one, valid only for
a limited range of masses around M{ and under the assumption that M¢ > I'. This de-
ficiency is, however, not valid, if we introduce elementary unstable objects by means
of the second approach. This method is so general, that any particular scattering channel
with continuous spectrum of total energy can be represented as the generalized mass
shell of the type (1.2) for a single unstable elementary object3. If one wishes to introduce
in such formalism an unstable free particle, one should modify (1.5) as follows:

oht(K?) = f12) 03p=() (1.6)
where f{x?) has the following properties:

1) f(x%) = 0 for k2 < mjj e
2) f(,?) =1 for k2 = Mg

! We shall consider in this paper only spinless, unstable, elementary objects.

2 Another point, raised recently against the idea of complex mass-shell approach, consists in present-
ing the examples of scaltering amplitudes, satisfying all requirements of analytic S-matrix theory and
producing sharp isolated resonances without accompanying Peierl’s pole on the unphysical sheet. See,
for example, G. Gallucci, L. Fonda, G. C. Ghirardi, Phys. Reuv., 166, 1719 (1968).

* The discussion of the most general, free, unstable object has been given by J. Lukierski, Acta
Phys. Hungar., 26, 217 (1969) (Proc. of Balaton Symposium on Hadron Spectroscopy, Kesthely, Hungary).
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3) f(x?) describes the correct threshold behaviour at x? = mj ... Besides, one can
normalize f(x2) in such a way, that the relation (1.4) remains valid also for 4. Before
passing to some technical problems we would like to dwell shortly upon the physical
meaning and utility of the notion of elementary unstable objects in relativistic QFT.
The instability property and the occurence of decay products always implies, that for
every theory with unstable particles there should exist an underlying asymptotically
complete theory defined in the Fock space of stable asymptotic particles. Speaking in less
rigorous, but more intuitive language, every unstable particle is indeed a composite ob-
ject, formed from its decay products. It appears, however, that sometimes it is useful to
forget about the underlying “*basic” theory, containing only stable particles®. In particular,
the notion of unstable elementary object makes sense if we wish to consider a perturba-
tion expansion in the presence of resonances. It is easy to deduce that finite sum of pertur-
bation theory diagrams is not able to explain the occurence of unstable objects. One can,
therefore, try to separate the terms, which are not approximate by a finite number of
perturbation theory terms. Such a procedure has been proposed in nonrelativistic scattering
theory for the case of stable bound states by Weinberg®, who introduced in such a way
the so-called quasiparticles. If, however, the quasiparticle is unstable, for example a reso-
nance, one should modify Weinberg’s idea by introducing the free field operator, which
is able to describe a continuous mass spectrum. In such a way one arrives at the notion of
the field operator ¢(x;s) with an additional continuous parameter, which in the free
case is characterized by the following equation of motion®

(C=5) golx;8) =0 (1.7)

and the following four-dimensional commutator

i - .\‘_ o x. ! = iA(x:s 5 4
L% <E’S>’ %<_ E’Sﬂ = id(x; )5(s—5). (1.8)

The generalized free field @y(x) is expressed by fields ¢y(x; s) as follows:
Po(x) = | () polx; 5)ds. (1.9)
0

The complete QFT containing unstable particles should be constructed in two steps:
a) One introduces a theory with an elementary unstable object, with arbitrarily chosern
mass spectrum  g(s).
b) One picks up from the underlying theory, describing the interactions of stable
particles, the dynamical mechanism determining the spectral function.

+ Sometimes one assuimes, that the underlying “basic” theory is described by a nonobservable field
operator and that only stable bound states have a physical interpretation. Heisenberg’s theory of elementary
particles is constructed in such a way. A similar scheme is valid in field-theoretic quark models.

® See for example S. Weinberg, Brandeis Lectures, 1964, Vol. 2, p. 289.

¢ The fleld operator ¢g(x; s) has been introduced by Licht (A. Licht, Ann. Phys., 34, 161 (1965)).
The notion of field operator with continuous spectrum of asymptotic masses has been introduced by Thir-
ring (W. Thirring. Phys. Rerv., 126, 1209 (1962)).
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The general LSZ formulation of a field theory with basic field operator ¢(x; s), des-
cribing interacting elementary unstable object, has been given by one of the authors [5].
The notion of a free field in such QFT, describing elastic scattering, has been also investi-
gated [10]. In both these papers only the first level of the theory was considered with the
field operator @(x;s) as a primary one, and the spectral function e(s) not determined
dynamically. In order to study both levels of the complete theory — the formulation with
unstable elementary objects as well as the correspondence with the underlying theory of
stable particles — we shall consider in this paper a generalization of the Lee model with
the field operator V(p), describing the V-particle, replaced by the operator V(p; E). We
hope that using such a simple nonrelativistic model one can show the meaning and features
of the unstable elementary object, described by the field operator

Y (p) = E 0 *(E)V(p; E)dE. (1.10)

In Sect. 2 we give the formulation of our model and in Sect. 3 we present an explicit
solution of the N@ sector.
We have the following three processes in N@ sector:

J\v@ i d JVO
NO - ¥
¥ - Y. (L.11)

The first process describes the non-resonant part of N@-scattering, the second process
the transition between the non-resonant and resonant parts, and the third one describes
the ““free” resonance.

In Sect. 4 we discuss the relation between our description and the one representing
the unstable V-particle as a complex pole on the unphysical sheet. We show also in Sect. 4
how to continue analytically on the second Riemann sheet the unitarity condition. The
problems of comparison with the conventional Lee model with direct four-leg int: raction
are studied in Sect. 5.

2. The formulation of the model

We introduce the following Hamiltonian:

H=HJ +Hy +H® +H,, 2.1
where [18]:
Hy = [ dE-E[d*pV*(p, t; E)V(p, 1; E) (2.1a)
Eo
Hy = my [ d*pN*(p, 1) N(p, t) (2.1b)

HE = [ d*ka(k) Ok, t) Ok, t) 2.1¢)
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and
e (KR (.
Hi = o j Gt Jd PV *(p, ON(p—k, Ok, 1) +h.c.} (2.1d)”
¥(p, ) = | dEQ"EWV(p, 1; E) @1¢)
Eo

where f(k) is real and [ dE o(E) =
Eo

The field operators satisfy the following commutation. relations:

V=(p. 1. E), V(p', t; E))] = o(p—p') (E—E") (2.2a)
[N*(p, 1), N(p', 1)] = (p—p') (2.2b)
[0k, t), O, 1)] = 8(k—K'). (2.2¢)

Other equal time commutator of the operators V, ¥+, N, N*, @, and @* do vanish.
In order to obtain the equations of motion, we should use the Heisenberg equations.
One gets the following set of equations®

1o o , d*kf(k) v
(—i A —E> Vip.t; E) = 2 ) e T )j(z e N(p~k DOk, 1) (2.3a)

7 We denote k = jk| and (k) = (k*+:2)*, Besides, we shall assume further that E, = my+u.
8 One can also derive the equations (2.3) as Lagrange-Euler equations following the Lagrangean:

L =2V + 7Y + 29 + &,

int

where
oo
FY = E'[{V*(x,z E) a,V(x,z E)+EV+(x,t; E)Vix, t; E)} dE
E,
i —
) = 5 (N6, D) &N, 1)+ myN*(x, 1) Nex, 1))
i —
Ze = 5 (Ox 1) 50(x, 1)+ | @*x 6 (x, Hwi(x—x') O 1.}
and

Lim = g [ &% Fx—x) [ (x, ON(¥', 1) O(x', ) +h. ¢}
provided that

1
wplx) = G P (p? + 12)dp

F(x)=

P J ftkyetk= k.

The field operators occurring in the Lagrangean satisfy the following E. T. commutation rela-
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18 g [ KK .

(_i ot _m“’) N = Qn)" | Quk)'" 7 p=k 007k, ) (235)
19 ; 20 [ @ .

<7 P —w(k)> Ok, 1) = ) .f(zw(p))‘f'z ¥(p, ON* (p—k, 1). (2.3¢)

Introducing the object ¥~ with continuous spectrum of asymptotic masses one pre-
serves the basic properties of the conventional Lee model, i. e.:

a) The physical vacuum \0) is defined by means of the relation
N(p.t) 0> = @(p.1) |0y = V(p.:E) |0) = 0. 2.4

b) It is possible to define two conserved charges
Qi = [ dE[d’pV™(p, t; EV(p, t; E)+ [ d*pN7(p, ON(p, 1) (2.52)
Eq

Q, = [d*pN*(p, t) N(p,t)— | d*kO+(k, 1) O(k, 1) (2.5b)
satisfying the property:
[H,Q,}=[H, Q,]=0. (2.6)

From the relations (2.6) it follows that in the model (2.1) one can introduce analogous
sectors as in usual Lee model?

¢) The local limit is obtained, if

fik)y—> 1. Q.7

In this paper we shall discuss in detail the N@ sector of our model.

3. The solution of NO sector

Itis known® that the Zachariasen [11] model can be described by a bilinear Lagrangean
with the field operator describing S-wave pair with continuous mass parameter. The

tions:
[VH(x, t; E), V(X', 1, E)] = (x—x") (E—E")
[NH(x, 1), N(x', )] = 6(x—x)
[@Hx 1), O, )] = o (x—x).

The equal time commutators have been normalized in such a way that the local limit is described by the
relations (2.1).

It should be stressed, that the nonlocality occuring in our Lagrangean is only with respect to the
space directions and one can derive the equations (2.3) as Lagrange-Euler equations without any formal
difficulties.

9 See for example S. Schweber, An Introduction to Relativistic Quantum Field Theory, Row, Peterson
and Co, Evanston (USA), 1961.
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Zachariasen mode! shows remarkable resemblance to the NO sector in the Lee model.
It has been shown [12] that in Weinberg’s reference frame, with infinite total three-momen-
tum, the NO scattering amplitude in the Lee model is given exactly by the unrenormal-
ized form of the scattering amplitude in the Zachariasen model. On the other hand it has
been proved [10] that in relativistic theory the scattering amplitude in any elastic channel
can be described as one-particle scattering of some field operator ¢,(x;s), commuting
to a c-number, where the parameter s describes the total mass spectrum. This general
conclusion is also valid in nonrelativistic theory, provided that the covariant total mass
square s is replaced by the total energy. In particular it has been demonstrated!® that
the N@ sector (i. e. the formula for N scattering and the formula for the propagator
of V-particle) can be described in a completely equivalent way by a bilinear Hamiltonian
of the Thirring type® the only difference being the nonrelativistic kinematics. Applying
this method to our model, one can describe the dynamics of N@ sector by the following
Hamiltonian:

H=H} +Hf +H.’ 3.1
where H{ is given by (2.1a),
HE = [ dE-E[d%p"(p.1: Dy(p, 1: D) (3.12)
o
HYE = go| &3p{¥ +(p, 1) &(p, 1) +h. c.} (3.1b)
and
#(p,1) = [ dE"(E)y(, 1 ). (3.1
The one particle state
lp, 1, E> = ¢(p, 1; E)[0 ) (3.2)

describes an S-wave NO pair with the total energy E. In the subspace representing the N@
sector in the Lee model one can introduce the following substitution:

..1/2 3
b 1 EY = 22 2 j(zwd . HE—w(k)—my)N(p—k, N0k, 1)i0).  (3.3)

@m)*"2 (k)72
Because
lo™(p. t; E), (p', t; E')] = 6(p—p') (E-E") (3.4)
we have

{p, GEp,t;Ey = 5(p—p) (E-E) (.5

10 One can also introduce the Lagrangean leading to the equations (3.9) as the Lagrange-Euler
equations. See footnote 9 and J. Lukierski, M. Oziewicz, Bull. Acad. Polon. Sci. Ser. Sci. Math.
Astron. Phys., 18, 695 (1970).
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and from (3.3), (3.5) and (2.2) one gets
1

_ _ 2_ 27
0o(E) = p V(E—my)?—p?. (3.6)
Using the relation
L[k k) N(p—k, Ok, 10> =
Qn ) ok T ETE T

TR
- f dE f T S(E— w(k)— my)N(p—k, )0k, )05 =
Eo

Qak)”
= jdeo:)“(E)F(EN p, ; E) (3.7
Eo
and
F(E) = f((E~my)*— 2] ) (3.72)
we see from (2.1d), that one should put in (3.1c) the following value of ¢(E):
o(E) = 6,(E) - F{(E). (3.8)

Using the canonical commutation relations, one obtains from (3.1) the following Heisen-
berg equations of motion:

oo

10 ; y i y .
(—i o —E> ¢(p, t; E) = goo '*(E) J dEo *(E)V(p, t; E) (3.92)
Eo
16 , o
(—. gt —E> V(p,t; E) = go0 (E) JdEa "(E)¢(p, t; E). (3.9b)
1 C¢
Eg

One can introduce the following four Green functions
(X3 E, E') = —i O|T{V+(x; E) V(x; E)}|0)
wowe(¥; E, E') = —i O|T{g*(x; E) ¢(0; EN}{0>
wo(; B, E').= i O|T{V*(x; E) ¢(0; EN}[0)
tye(x; E, E') = —i O|T{¢*(x; E) ¥(0; E")}|0). (3.10)
Using the equations (3.9) and the canonical commutation relations:
[V*(x; E), V0, E))]—o = 0(x) (E—E’)
(x5 E), )0, E)]_o = 6(x) S(E—E") (3.11)



one obtains for the Fourier transforms of (3.10) the following set of equations:

(Po— E)tiy(p; E, E') = (E—E')+ 200" (E) J dE"6"(E"Ytxe,4(p; E', E')

(o —E)txo.(p; E, E') = go0 '%(E) Ej dE" o'""(E"Ytpy(p; E', E')
(po —E)TJW),NQ(P; E, E’) =

= 8(E—E')+ g0 'AE) Ef dE" 9""(E" Yty no(p; E”', E')
0

(Po—E)ty no(ps E, E') = g0 "(E) | dE"¢'*(E" Y55 ve(p; E', E')
Eo

the solution of the system of equations is as follows:

S(E—E)
Po _E+ ie

(p; E, E) =

2 0 *(E)o *(E") 74(p)

+g 5 PR
® (po—E+ie) (po—E'+ig) 1—g2-14(p) - 14(p)

o (E)- 0 M(E) 1
(po—E+ie) (po—E' +i) 1—g5 - 1(p) - T4(p)

TW,V(P; E,E) = g,

0E)- o) 1
(po—E+ie) (po—E' +ie) 1—g5 - 1(p) - T5(p)

TV,N@(PZ E,E) =g,

o BB = o(E—E)
tN@,N@(p5 ,E) = m
g o/ME)-o'ME) 76(P)
® (po—E+ie) (po—E' +ie) 1—g3 - 14(p) - 14(p)
where
. o EYdE
) = i [atxe Ty o = | L0
Eo
. 3 E)dE
to(p) = —i f d*xe™ P O] T{P(x)(0)}|0> = j p"(_ ;ﬁ.

Eo
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(3.122)

(3.12b)

(3.12¢)

(3.12d)

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.14a)

(3.14b)
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In order to obtain the scattering amplitudes for the processes (1.11) one should use the
following reduction formulal!

1 M ! 4
- T(p, po) = Ehm {(po—E) (po—E)t(p, po; E, E')}. (3.15)
- pPo
E' - po

It is easy to see that the scattering amplitudes do not depend on p, i. e. T(p, py) = T(p,)

and similarly 7,(p) = 75{(po), To(P) = Talpo)-
We have, using (3.13)(3.15):

2
200(Po)te(Po)
Try(pe) = (3.16a)
PR T g5 walpo) * T (Po)
2 12
. 00 *(po)o "*(po)
Tye.(Po) = Ty no(Po) = 02 ° ° (3.16b)
1 —g6 " Ta(Po) * T4(Po)
2
869(Po)tyAPo)
Trowe(Po) = T o (3.16¢)
1—86 * TalPo) - T4A(P0)
It is easy to notice from (3.16b) that if
supp o Usuppo # 0 (3.17)

there occurs a transition N+@ — V.
In order to arrive at a physical interpretation of the scattering amplitudes (3.16)
we should have the following two unitarity conditions satisfied:

Im Tyy(po) = |T7,ne(P0)|? + [ Tiv (o) |? (3.132)
Im Txg,ve(P0) = |Twe,r(po)|*+|Tre,ve(Po)|* (3.18b)
One can easily check, using the formulae
[m 7,(py) = mo(po) O(Eo—po) (3.192)
Im 79(po) = 76(Po)O (Eo—po) (3.19b)

that the relations (3.18) are valid.
We would like to observe, that it is possible to write the unitarity relations (3.18)
also in the following way:

Im Ty (po) = U(PO)ITV,N@(PONZ + Q(PO)IT?V(PO)IZ (3.20a)
Im TN—@,NQ(po) = Q(Po)|Tﬁ,V(P0)|2 + O'(Po)|TN_8,N8(P0)IZ (3.20b)

11 See for example Ref, [S]. See also
a) M. S. Maxon, R. B. Curtis, Phys. Rec., 137B, 996 (1965),
b) J. Lukierski, L. Turko, Phys. Acad. Sci. Polon., 16, 905 (1968).

The choice of the constant factor — is related with the simplest form (4.2) of the unitarity condition.

T
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‘where
Ty (po) = o(po)T7(Po)
Tyo.v(Po) = ¢(po) * &*(Po)T56.4(Po)
Tys.ne(Po) = 0(Po)Txe.ne(Po)- (3.21)

The coefficients o(p,) and ¢(p,) have the meaning of the phase spaces of the intermediate
&(NO-pair!) and ¥~ objects inserted between T+ and T in the unitarity relation.

4. Analytic continuation of the energy plane and the unstable V-particle as a complex pole
on the unphysical sheet

Let us introduce the field operator describing the unstable particle, by means of the
ormula (2.1e). We define the following Green functions:

174 (x) = —KOIT{¥ *(x)97(0)}i0) = [ dE | dE'0'/*(E)o"(E')tp ,(x; E, E')
17 ne(x; E) = —i0|T{¥ " (x)g(0; E)}i0) = | dE' 0" "*(E'Yty yo(x; E, E')
e (x; E) = —iO[T{g" (x; EYY(0)}I0> = [ dE' 0 "(E'Ytzpp(x; E, E)).  (4.1)

Using the formulae (3.13) for the Green functions, one obtains the following results for
the Fourier transforms of the Green functions (4.1):

1.
T3y (Po) = Ty{Po) +T3(Po) ;t Tv(po) (4.2a)

‘/2( E)
E+

7 ne(Pos E) = ve,9{Pos E) = TV(PO) TV ne(Po)- (4.2b)

The Green functions (4.2a) and (4.2b) are described by the analytic functions in the
complex energy plane with a cut extending from E; to co, and they can be analytically
continued into the second sheet. We have the following formulae for the propagators
(3.14) on the second sheet (Im z, << 0):

(4) = r,( z)—2nip(2) (4.3a)
T(2) = Tip(2) —2nmio(2) (4.3b)

where 7-(z) and 74(z) are obtained from the formulae (3.14) by the replacement p, +ie — z,
and analogously:

2.1
~ i 26Ta(2)
Ty(z) == (4.42)
" 1-g5 - 73(2) - 75(2)
F n go
wov(2) = Ty ne(2) = (4.4b)

T8 @) )
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The analytic continuations of the Green function (4.2) is as follows:

T5y(2) = To2) +T(2) - Th(2) - TVV(Z) (4.52)

2 -1

E
E) e ) o). (4.5b)

I i
17.no(2; E) = Txp,4(2; E) =

Let us assume that the propagator 74(z) has a pole on the second Riemann sheet
at the point z = M = My,—il.
Assuming that its residuum is normalized to unity, we have
lim (z—M)di(z) = (4.6)
z-M
Using the relation (4.6), one can introduce the following reduction formula for the
Green functions (4.5), defined on the second sheet

Hm 7(z — M)ty (z) = Tp(M) (4.72)
z+M
lim 7(z— M) (z - E)tz vol2) = 0" )Ty, vo(M). (4.7b)

zoM

The reduction formulae (4.7) give the value of the scattering amplitudes (4.4a)-(4.4b) at the
complex point z = My—il". Such a point determines the complex energy shell on the
second sheet, introducing Peierl’s notion of unstable particle.

It is interesting to see that the values of To,(M)and T g}Ne(M) are restricted by the
unitarity condition, analytically continued onto the second sheet. Let us introduce the
phase space Z,(z, z¥) and Zy(z, z*) for the objects ¥” and @, having complex energy
z = py+iq, and represented on the second sheet by the formulae (4.5). We have the follow-
ing formulae:

I Az, z%) = Z3(z*%, 2) (4.8a)
Zo(z, 7%) = Zg(z*, 2) (4.8b)
and, if z— p,, one should get (see (3.19)):

Zy(z,2%) = 0(po)O(E - po) (4.92)
Zo(z, 2%) — 0(Po)O(E — po)- (4.9b)

The unitarity condition, analytically continued on the second sheet, can be written
as follows:

T ~ 11 ~ 1l
Im 77, (2) = Zo(z, 29 T7ne(2))* + Zy-(z, 29 Ti(2)]? (4.10a)

~ Il

Im Txe.we(2) = Z4-(2, %) Txo, () + Zo (2, 2%)| Te ve(2) (4.10b)
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where the phase spaces are given by the formulae

1
Z,(z,2%) = - Im t5(2) (4.11a)

1
Zp(z, z%) = - Im 7i(2). (4.11b)

If we assume the behaviour (4.6) on the second sheet, the phase space X, is singular
at z = M, and for the neighbourhood of z = M one can write

. 1 ~ 1
Im Ty (z) ~ ~Im L) Tru(2)? (4.12)
z=M
Or
71 -1 1 |
Im [77,(2)] ?M - Im 7,(z). (4.13)

One gets, therefore, near the singularity described by (4.6), that

Tonz) ~ —n(z—M). (4.14)

z=M

The result (4.14) can be derived also directly from (4.4a). We can conclude, therefore

Tyy(M) =0 (4.152)
d ~ 11
= Typ(2) =y = — 7 (4.15b)

dz
It is interesting to note that one obtains the formula (4.6), if one assumes

1 r

o(po) = 2 (Pa—MP 1T (4.16)

In such a case one gets besides the pole (4.6) also a second pole, at # = M*. Because
one can write

© r 1 1 1 1 @.17)
Z) = = e I e ——— e .
¢ n (z—M) (z—M*) 2ni |lz—M z—M*
we see, using (4.3a), that
1
forza M
Z—
do=1
YT for z ~ M*. (4.18)
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The pole at z = M* is very far away from the physical region and does not influence
the value of the scattering amplitude on the real axis.

One can introduce also the generalizations of the notion of a complex mass shell,
defined by the formulae (4.7). It is possible to generalize (4.7) for any singular point of
79.(z). Assuming for cxample, that near the threshold

=E

0'(E) ~ a@(E—E,) (4.19)
E=Ep
one gets the following behaviour of ty(2)

a
— In (Eq—2). (4.20)
2ni

(z) &
E=Eo

The reduction formula, describing the value of the scattering amplitude 7%, at the
threshold (the scattering length) takes the form

3

. 4n -2 N ~ 1
lim — In"2 (Eq— 2)ty4(2) = Tyr(Eo). (4.21)

zoEg Q4

The reduction formula, defining the scattering amplitude (4.4a) for all complex
values of z, can be described as follows:

Tyy(2) = 2l (D {154 (1)~ 752)) (4.22)
and can be used for any choice of th(z).
Finally we shall consider the eigenvalue equation for the physical complex mass
M = M,—iI’ of the unstable ¥ -particle. The propagator 7y(z) of the interacting ¥ -par-
ticle is given by the formula
[ = [5()]" —gitalz) (4.23)
and we have
[T(M)] 1 = gota(M). (4.24)
The equation (4.24) is the generalization of the usual formula for the mass renormaliza-
tion in the ordinary Lee model

dm = My—M, = gé‘cg(ﬂ%) (4.25)

and describes the case, when already unperturbed M, is a complex number with negative
imaginary part.

5. The equivalence with conventional field-theoretic model

From the considerations of Section 3 it follows that in the N® sector one can de-
scribe the two-particle state

1 d3kf(k)

)’ | Qw(k))'

N(p—k, HO(k, 10> (5.1)
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as the following one-particle state

5 dEs"(E)p(p, t; E)I0) (5.2)

where o(E) is given by the formula (3.8).
In this section we are interested in the inverse problem, /. e. how to find two-particle
state corresponding to the following state

¥ (p, )]0) = deg"Z(E)V(p,t;E>|0> (5.3)

where o(E) is given as a primary quantity. It is easy to see that one can represent the state
(5.3) as follows:

L[ k) ek 0ok 00 5.4
(271)3"2JW (p—k, DOk, 1)|0> (5.4)
where
20 Q@(K)+my)
g'(k) = o(w(k)+ my) (5-3)

and the operators N, N+ and O, @+ do commute with N, N+ and ©, @+. The Hamil-
tonian, leading in the lowest sector to three scattering amplitudes

NO - NO
NO - N'@’
N'O - N'O (5.6)
identical with corresponding three scattering amplitudes (1.11) looks as follows
H=H,+H,, 5.7
where
Hy = HY +HE +N) +HE (5.7a)
and
2o Prfk) [ 3k gk

Hint = 37, ; 17 i, X
QY ) Quk)) * ) Qu(k)) "2

x{N*(p—Kk',t) Ok, 1) N(p—k, 1) Ok, 1) +h. c.}. (5.7b)
In particular, 1t is casy to sec from the formula (5.5). that
supp o(E) < [mg+ji, ] (5.8)

i. e. no corresponding field-theoretic model exists, which allows to introduce an ele-
mentary unstable particle represented by a single pole on the unphysical Riemann shect.



246

The equivalence between the lowest sectors of the Hamiltonians (2.1) and (5.7) cannot
be extended, however, to arbitrarily high sectors. This problem is related with the general
question, how to relate the generalized free fields with the free field operator, describing
free stable scalar particles'?. It has been shown recently by Turko [13] that only the
lowest, one-particle sector, generated by the generalized, free field from the vacuum, can
be represented by usual multiparticle states in the Fock space. If we consider the general
state created by the products of generalized free field operators, an equivalent description
in the Fock space of stable particles requires the introduction of parastatistics. If we con-
sider, therefore, the ¥"O-NOO sector in our model (2.1), the corresponding generalized
Lee model is further given by (5.7). The lack of equivalence appears in the channel where
at least two ¥ -objects can appear. An example of such a sector with lowest number of
particles 1s the one containing NNOO states.
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