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A separable two-channel potential model is used to describe hyperon-nucleon reactions.
The parameters of the potential are set to reproduce the low energy sigma (lambda) nucleon
scattering, hypernuclear data and the virtual bound state of the sigma and nucleon.

1. Introduction

There are two main sources of information on the hyperon nucleon forces, elementary
scattering and hypernuclear physics. Considerable progress in understanding low energy
interactions has recently been achieved by measurements of sigma and lambda reactions
on protons [1, 7, 8]. The few body hyperonic interactions, however, involve sligthly more
physics due to off-shell scattering. This requires a definite model, and the aim of this
paper is to obtain a separable, two channel, potential model which would reproduce all
the experimental information. Having in mind a further application in the few body physics
we choose a form of the potential to be the simplest possible, with a minimum number
or parameters.

The paper consists of three sections. In Section 2 we recollect the properties of the
separable potential model and its relation to the reaction matrix approach. In Section 3
the description of the hyperon (Z, A) and nucleon () reaction is provided. The region of
interest begins at the AN threshold and reaches the low energy ZN scattering. We are
interested in the S wave only, as the information on the higher partial waves is practically
null. A number of constraints is put on the potential. The most important are: reproduc-
tions of the AN and XN scattering lengths and effective ranges, reproduction of the ZN
virtual bound state in the triplet AN scattering and the effect of suppresion of the lambda
nucleon forces in the odd A light hypernuclei, [2, 6]. A set of parameters of the potential
is given and properties of the solution are discussed.
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2. Basic properties of the separable model

We review in this section the essential features of the many channel separable potential
model and its relation to the reaction matrix model.
Let us consider the Lippman Schwinger equation for a given partial wave

T(E) = V+VG(E) T(E)

with all the indices suppressed. In the simplest case of spin independent forces we assume
the potential to be a matrix in the channel indices of the form.

Vij (k, k') = Vi(k) 'lij Vj(k,) (1)'

where i/, j stand for the channel indices and k is the relative momentum. The coanditions
of hermicity and time reversal invariance make the form-factors V(k) to be real functions
and the matric 4 to be real and symmetric. In order to simulate more physical meson
exchange potentials we require all possible singularities of the form-factors in the complex
momentum plane to be concentrated on the imaginary positive semi-axis. We assume the
potential to be short ranged in space and exclude an infinite number of oscillations. This
means that V(k) is expected to be continuous on the real positive semi-axis.
The solution for the scattering matrix T is of the form

THkK'E) = V)L AEY(K') 2)
where
1_1(E)ij = )“i—;'l_Ri(E)aij 3
V(ION; >
R{(E) = j pE dsk. 4)
E'—Qi_ —— +i8
2u;

In the last formula Q; is the threshold energy for a given channel {, and N; is the normali-
zation factor for the plane waves in the CM system. This is chosen to be

Ciklkjy = Ni§d(k—k) = 6,;0(k—k) 2m)°p; &)

where g, is the reduced mass of a channel. The form-factors are assumed to fall off rapidly
enough to provide convergence of the integral (4). For the specified analytical form of the
form-factors the function R has the form

R(E) = P(E)—iq:V(9) (6)
where P(E) is a real (on the real axis) function and
R

g = vV 2u(E~ Q) (7

is the on shell value of the relative momentum. From the definition it is easy to see that
R(E) is a monotonic function of energy for £ < Q.
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If we choose the standing wave boundary condition that is the contour of integration
which splits into two paths passing around singularity, in the formula (4), on both sides,
the corresponding reaction matrix is

Ki{kk'E) = Vi(k)ki (E)V (k")
KE);" = Aj' —P{E)S;; ®)
The obvious relation
17t = Kt +ig Vs, )

is the Heitler equation for our case. Eq. (1) is the simplest possible form of the potential
but it proves to be sufficient to describe the scanty data available.

It is well known that a one channel separable potential with one term, i.e. of the
form (1), may produce at the most one bound state but a number of resonances may
occur. This follows from the formula (4) which shows that on the real axis R(E) is a mono-
tonic function of energy below the threshold and may oscillate above the threshold, if
k2V?(k) is an oscillating function. The following statement is the counterpart in the two
channel case: there may be a number of resonances in the open channel below the threshold
of the closed channel but at the most one of them corresponds to a virtual bound state
in the closed channel. To see this, let us specify the situation in the case of AN and EN
scattering. If we denote

AN ZN
o y \AN

k~\(E) = (10)
vy BJIN

then we obtain from Eq. (9)

R B+iqsV3 ~7 1
t(E) = ( B . 2 3 2 N 2 2 (11)
-y a+iq, Vi) (B+ig;V ) (a+iqV ) —y

The condition for a resonance to occur in the open AN channel below the threshold for
the closed ZN channel is

af~1gslVD—y* = 0. (12)

In the simplest case of uncoupled channels (y? = 0) this condition describes two cases:

a) a = 0, i.e. a resonance in the open channel. As was shown above there may be
a number of them.

b) f=p- qul V# = 0, that is a bound state in the closed channel ZN. There may be
only one bound state under the assumption (1).

Relaxing the condition for y we obtain a family of resonance trajectories depending
on the strength of coupling. We can distinguish the trajectories, at least for some distance
from the point y? = 0, what allows for a physical interpretation of a possible resonance.
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From the formula (11), with the condition (12}, it may be seen that the width of the reso-
nance is
2
rp2 = qA—;;A (13)
o + ﬁﬂ
where the primes denote derivatives with respect to energy. This formula shows that the
width of the b type resonance tends to zero (f — 0) when the coupling tends to zero
(y — 0) i.e. the resonance becomes a stable bound state.

There is a problem to which category there may belong a resonance observed ex-
perimentally below the upper threshold. This may be answered if we have a definite model
(that is ¥} in our case) or all the functions a, f, y(£) between the thresholds. There is another
criterion, however, if the resonance is accompanied by a zero in the cross-section. Inspection
od Eq. (11) shows that the only condition for zero in the scattering matrix T, is f = 0 i.e.
the existence of a virtual bound state. The other condition o = co is excluded by our
assumption of continuity of ¥(k) on the real axis. The actual position of zero is shifted
from the position of resonance up or down according to the sign of « as it is clear from
Eq. (12). This interpretation of the zero in the cross-section is, in fact, model independent
and follows directly from the Heitler equation but the actual position of zero depends
on the form of potential.

3. The hyperon nucleon scattering

The scattering is a two channel, AN and ZN, problem. Region of interest begins at
the AN threshold and reaches the low energy XN scattering. The actual experimental
situation permits rather crude estimation of parameters. Thus we neglect effects due to
the isospin symmetry breaking, ie. Coulomb interaction and mass differences within
multiplets. This simplification is the basis of phenomenological analysis of Ref. [5].

The following data are taken into account:

1) The lambda nucleon scattering lengths and effective ranges for the S wave spin
singlet and triplet scattering. The various results are taken from Refs [4,7, 8,9, 10, 11}

2) Results of the low energy Z*p scattering (110-170 MeV/c lab momentum) into
elastic and inelastic 2%, An channels as summarized and described by the complex scattering
lengths in Ref. [5]. This determines only a part of the reaction matrix leaving some para-
meters related to the AN scattering undetermined.

3) In order to explain the binding energies of the odd A hypernuclei (in particular
3He) it is necessary to introduce some suppresion of the N channel in comparison with
the free case, [2, 6]. The required property, then, is that if the ¥y, triplet potential is
reduced in strength the triplet AN scattering length becomes smaller and the effective
range becomes bigger, [2, 6]. Another suggestion from hypernuclear physics (binding
energy of “He) is a relation of the scattering lengths |a3| > [a,l, 2L

4) An enhancement in the pA interactions in the triplet state is observed, just below
the X+n threshold, in the reaction K~D — Apn-, [3] The width of the corresponding reso-
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nance peak is about 10 MeV. Although, there is also an alternative interpretation of this
process in terms of a two step reaction {1], the resonance appears in the 0 BE models of
hyperon nucleon scattering, [2, 9].

5) In the forementioned boson exchange models of our reaction the ¢° Ansatz with
mass &~ 400 MeV plays a prominent role. This is used as an indication of the range of the
separable potentials.

We use the Yamaguhi form-factors ¥V = x?/(x2+k?). The standard form of the
scattering matrix T, (kk'E) on the energy shell is

1 -t _
=T E) = | +— —iq, = (qqcotd,—iq,) !
A

A

1 2 1 1 2
_._=<oz—- . ) RPN 2 (14)
A B+iqsVi(qs) ) V(g aa 2

where the last relation is valid around the threshold. Similar is the expression for the
sigma nucleon scattering.

The case of isospin T' = 3/2 is the simplest one and the results are given in Table I.
There is not enough data to determine the two parameters 4 and x for the sigma scattering.
We stick to the results of Ref. [S]. The solution denoted there (a) and (b), u = 0 is used

TABLE 1
Parameters of the separable potential, T = 3/2
J as[fm] ry{fm] xz[fm1] Az[fm} Ref.
1 0 0 — 0 ours
1 0 0 [51
1 0.33 —0.79 [12}
0 —3.2 2.0 1.84 —0.81 ours
0 —2.7+0.7 0 [53
0 —-6+1 21403 9]
0 -5 3.7 [13]

as it gives the signs of @, in agreement with the theoretical calculations [9, 13] and also
fits better the T' = 1/2 case. The effective range is set arbitrarily to be close to the calcula-
tions and to keep ay(E) within the quoted error in the whole region of investigated scattering
we (110-170 MeV/c lab momentum).

In the isospin T = 1/2 case our problem is a two channel one. However, experiment
shows that coupling of the channels in the spin singlet state is negligible, [5]. The results
are given in Table IL In the sigma case only one experimental parameter is available and
we used the procedure applied to the T = 3/2 case.

The spin triplet T = 1/2 case is the most interesting one. In Fig. 1 we give the behaviour
of the AN scattering lengths. The two different curves were fitted to the results (a) and (b),
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4 = 0, of Ref. [5]. For the sake of comparison the singlet 1/4, curve has also been drawn
The rapid changes of the triplet scattering parameters around the ZN threshold are due.
to the other channel. Both results produce resonances at energies Ex = 0.99 MeV and

TABLE II
Potential parameters, T = 1/2, spin singlet
Y a [fm] r [fm] x [fm—1] A [fm] Ref.
a4 —2.25 3.29 1.32 -0.90 [10)/ours
—2.25 3.71 21
-2.0 5.0 [81
—1.8 2.8 71
—1.61 3.22 [11]
z —0.9+04 0 [51
-1.0 3.0 1.68 —0.54 [5)/ours

A

Fig. 1. Plot of (—1/44) for the spin singlet and triplet cases. The curves (@) and (b) correspond to different
parameters of Ref. [5]. Above the XN threshold Re (—1/44) is given

0.014 MeV below the XN channel threshold. For the last the average value 2131.9 MeV
was used. The parameters are

—0.552, +0.884 —0.655, +0.720
Ia == > zb = fm (15)
,» —1.53 , —1.26

and x5y = k, = 1.60 fm~! in the both cases. The scattering parameters generated by these
potentials are given in the Table II1. The set (a) gives a slightly greater attraction and this is
the reason why the resonance is more distinctly separated from the threshold. An interesting
pattern is displayed by the cross-section in this case, as it is shown Fig. 2. The double
peak is due to the proximity of resonance and the XN threshold. The positive answer to
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TABLE III
Scattering parameters, T = 1/2, spin triplet, Ay = az+iby
ay [fm] ra as by Ref.
—2.21 2.30 -2.52 5.5 ours (a)
~2340.7 40+1.3 151 (@)
—-2.21 2.56 +3.0 4.5 ours (b)
£23+07 4.0+1.3 151 ®)
-2.2 3.5 [8]1
-2.12 3.31 2]
—-1.6 33 {71
—1.61 3.62 [11]
—1.5 2.0 [4]
8 640 ap [mbI
400 -
300 +
200+
100 -
N
-
L = -

o1 02 0.3 0.4 0.5 0.6 P, [GeV/cT
Fig. 2. Singlet and triplet lambda nucleon cross-sections. See captions to Fig. 1

the question whether the resonance really occurs (thatis 1/4, (E,) = 0) or not may be given
by detailed knowledge of the cross-section around the threshold, in particular, by the fact,
whether there are two or one peak. By small changes of parameters in the case (b) we
could get rid of the resonance but in all the cases an enhancement in the cross-section
would appear. As was discussed in Section 2 the way to see the nature of the resonance
is the limiting procedure Ay4 — 0. If we do this in the solution (15) the resonance position
moves closer to the 2N threshold. In the limit we obtain the pole in the expression Tyy
corresponding to a stable bound state with the energy Ez = 0.73 MeV in the case (a)
and Ep = 0.0017 MeV in the case (b). Thus the resonance is of the type b according to
the discussion of the previous section. The reverse reaction matrix element «(E)is a regular
negative function of energy in all the region. This causes the zero in the cross-section
(see Eq. (12)) to be pushed upwards with respect to the resonance. However, because of the
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proximity of the threshold, this zero does not occur. In the limit of the uncoupled channels
the AN triplet scattering length is reduced, as it is required by the assumption 3. This
particular condition make a fit to the parameters (c) and (d) of Ref. [5] rather difficult.

In conclusion let us mention that although the characteristic parameters of the virtual
bound state are model dependent the fact of its existence (or nonexistence) follows from
the general formalism of the reaction matrix. It would be very interesting to have more
accurate data to settle the problem. There is also a hope that a detailed analysis of three
body hyperonic reactions will be also helpful.
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