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The static baryon model with the symmetry group SUQ);®@SUQR);®U(l)y is in-
vestigated in the strong coupling limit. In the algebraic (or — equivalently — in bootstrap)
formulation of that model the reduced meson-baryon coupling constants can be found
from the sum rules involving the static angular momentum and isospin crossing matrices,
both proportional to 6j-symbols. This fact enables one to use the identities between 3nj-
-symbols of the group SU(2) in order to find two types of solutions (Egs (10) and (23)) for
the coupling constants and the isobar states spectrum.

In this note we want to present several solutions to the static baryon model with
internal symmetry SU(2); ® U(l)y, where I is the isospin and Y the hypercharge. We
will use the static model in the strong coupling limit as formulated first in reference [1];
to a large extent this formulation is equivalent to the static bootstrap model (see the dis-
cussion in [2], where further references are given).

We shall consider the scattering of mesons (e.g. of pseudoscalar mesons) I1,,, on the
static baryons B;;,, where , j, y (1, A, v ) are the isospin, spin and hypercharge of the baryon
(meson), respectively. The s-channel scattering process is

Bijyr+Hl}.ug - Bi’j’y'r’ +Hi’l’v’g', (1)
while the w-channel scattering is
Bijye+ 11,5 g = Bijyr+ 11555

the difference between them is that initial and final mesons are interchanged and replaced
by their antiparticles, with the reversed sign of hypercharge. Because we cannot exclude
in advance the possibility that there is more than one baryon (resp. meson) with quantum
numbers i, j, y (resp. 1, 4, v), we add the repetition label r (resp. p, or for antimeson @)
in order to distinguish between otherwise similar particles. The interaction is assumed
to be invariant with respect to the symmetry group K = SU(2), ® SU(2); ® U(1)y.
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The spectrum of the baryon states (isobars) and the reduced meson-baryon coupling
constants are to be found from the set of equations

Csuyu = Vs (2)

Here the total u-to-s channel crossing matrix Cg, is equal to the direct product of the
spin and isospin crossing matrices: Cy, = CJ, ® CL,, where CJ, and C!, have the following
matrix elements, respectively

G+Asi +4) 2T+ A+ A m g1 jAJd
¢t = (DR ) { 2 J,} 3
(4 and A’ take integer values — they are, for instance, orbital angular momenta of pseudo-
scalar mesons),

Criey) - (L DH*etoor 1 1) {l 1 5} , @
where @, = 1(21) for 1 integer (half-integer) and {:::} is the 6j-symbol of the group SU(2).
The upper indices of the matrices C in Eqs (3) and (4) specify the s-channel reaction.
75 (72) in Eq. (2) is the sum of residua of one-baryon poles in the partial wave scattering
amplitude, which follow from the s-channel (resp. u-channel) intermediate states with
quantum numbers I, J, Y (resp. I', J', Y'):

Wy = ER: YT R(Ave)* YR (W A @')
Oy = ; ‘Y?'g,"Y'R'(l’}" - UIE )*?} JJ'YY R'(I;L —'UE)~ )

In the last equations the reduced coupling constant yi%g(14vp) for the decay Bjyyg —
- By, + I1,;,, is defined as follows

CUSTTSYRIAZS i jjsyr) = [; v ] [J. 1 ] Syro ¥ iRvQ*. (6)
sizsls || JsdsJ3

A% are the commuting meson source operators acting in the isobar space, [:::] denotes

the C.-G. (Clebsch-Gordan) coefficient of the group SU(2), d, ., y results from the hyper-

charge conservation. In addition to Eq. (2) the reduced coupling constants have to satisfy

the vertex crossing (or vertex symmetry) relation

Qi+1) (2J+1)]"

iatiog) = (-pprsmre | ZEAEED | o )

with @, = ¢,+1 = 0 (—1) for 1 integer (half-integer).

We shall look for the solutions of Eq. (2) by exploiting the identities connecting the
3nj-symbols of the group SU(2). This method was used first in the strong coupling model
of P-wave pion scattering [3] and was later generalized in reference [4]. The main idea
of such an approach is the following: our aim is to find the matrix representation of the



317

algebra of operators A% which are the irreducible tensor operators with respect to a sym-
metry group K. The individual (physical) properties of the given tensor operator 4 are
fully characterized by its reduced matrix elements. Hence by separating out these elements
via the Wigner-Eckart theorem like in Eq. (6) and collecting the C.-G. coefficients (which
describe the geometrical properties of the tensor operator) in the form of a 6j- symbol
for instance (in the SU(2) case), one reduces the commutator of the type [4%), 4$%7)] = B,
to a set of equations for the reduced matrix elements of operators A, B. When A(")’
commute, as is the case in the strong coupling limit, these equations are just of the type
of Eq. (2).

As a first simple example we shall apply the well known identity between the 3j-symbols
(or equivalently C.-G. coefficients) and a 6j-symbol (e.g. [5], Eq. (21.29)), which can be
written as follows

v AT SRR VN I A A B
E (-D¥@J +1){J_, e J,}(2.I+1) [m_ @+~ L=
7

_ A—p+ A —p -1/, jAJ ~1,| J A J
= (=D HFA R4 1) /[m” ](2J+1) /[m ”,M] ®)

Combining Eq. (8) with the similar identity containing {, Y ,} and using the definitions (3)
and (4), we can write

(i +1) O+ A+ 1) "1y 2T ~1/, v r i rr
Cir Ci; [@r+1 @r+1y] [ v N || m—p M X
T

' ’ ~1/y i 1 I j’ AJ =
x[I' +1) 2J' +1)] [ vN':l [m’ —u M'] B

=(—1)“’“"“"“’""""’[(21+1)(2J+1)]“”[i’ ’][’ * J] [@I+1) (27 +1)] > x

nvN
I AT
X [nl v/ N] |:nl’ IJ' M] - (9)
This equation is identical to Eq. (2) if one takes the reduced coupling constant in the form
QRI+DQi+DTVTi [ jA J
L (Avp) = | ———— 2 A 10
Yinm(1Avp) |:(21+1) 7 +1) nvN|{muM Y(Avp) (10

(we neglect for the moment the dependence on hypercharges). The unknown factors
depending only on the meson parameters have to satisfy the additional restriction following
from Eq. (2)

YEA =V =Yy —v—p) = (=D TG Ay Y W) (1)
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The free parameters (N, M), (n, m) play the role of repetition indices R, r and similarly
(v, w) = o, (—v, —p) = g; the sums over R, R" in Eq. (9) each amount to only one term
due to the properties of C.-G. coefficients. The vertex symmetry condition (7) determines
the normalization factor [(2i+1)(2j+1)]"? already included in Eq. (10) and moreover
imposes the requirement

Yi—v—p) = (=)™ (v, 12

under which Eq. (11) is automatically fulfilled. Therefore the coupling constants (10)
with the constraint (12) give the particular solution of Eq. (2). The baryon spectrum so
found contains the infinite baryon sets By;yy, each characterized by parameters (N, M),
with I > [N ], J= ]M ] The values of 7 and J are uncorrelated and hence the solution (10)
has too many particles to be physically interesting.

We shall try to find more economical solutions to Eq. (2) by taking into consideration
the special examples of the reaction (1). In order to simplify the treatment we shall bypass
for the time being the complications due to the hypercharge quantum number by assuming
that mesons are nonstrange, that is » = 0 = o' (and hence 1, 1’ are integer), and therefore
all the baryons have an equal hypercharge y = y' = ¥ = Y’. This hypercharge label
of the coupling constants will be omitted (in fact, as we will show later, the coupling
constant does not depend on the common baryon hypercharge).

Let us set in reaction (1) 1 = 4, 1" = 1’; then the relation (A.1) from Appendix A
could be identified with Eq. (2), if we adopt the following form for the coupling constants

Y, = (=D @i+ D 2+ D] {ﬁ ¢ j} "D, (13)

with the real parameter p(4),. The normalization and the phase factor in Eq. (13) are taken
in order to fulfil the condition (7). The label » takes on the values 0,1/2, 1, 3/2, ...; for
each value of v we have an infinite isobar series with the baryon spin and isospin restricted
by the triangle inequality |I—v] << J < I+v. The simplest baryon series one obtains
for v = 0, when { = j, I = J and the coupling constants (13) amount to

. 2j+1\72
?§(4)=(2J+1) y(A).

Now let us consider the scattering of mesons with arbitrary 14, 1’4’ on the baryons
belonging to this simplest series; that is, we putin Eq. (1) i =j, i’ = j". Inorder to construct
a solution of Eq. (2) for that case we use an identity proved by Wigner [6], which in our
notation and with definitions (3) and (4) can be written as follows

. vy dirinian VI VALV

JHi=J+0) ~(+aisj+2) —
E Cir Cir {x y j}{z ; j'} -
1y

o pyrreaer (LIVY LTV
_( 1) {/: 1 J} {l' l, jl}' (14)
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Comparison of Eqs (14) and (2) shows that the solution of Eq. (2) in this case is
. : , e {IJV
o, = 1y ) o, 4
with the restriction
YA AN Ay = (=1 AR )y (16)

Next we assume that in the reaction (1) only the initial baryon belongs to the series
v = 0 and hence satisfies i = j. To find the solution of Eq. (2) for that case we can exploit
an identity between 6j and 9j-symbols (e.g. Eq. (24,37) in [5]), which in our notation is

’ ’

. . 1 g 7 i! .] v

@rany @y~ LA AT VR v =
TR S O B S A O A M | o
T3 r>v

>
v an
Jv

With the help of Egs (3), (4) and (15) the above relation reads

[ 7

ij v
CHT =it ICTA T I AN (=1 T 1 AV () =
I’J’ II Jl VI
il jl UV
= 7By VAV pE )y (18)
IrJv

where the constants y(14), have to satisfy a constraint being the generalization of Eq. (16)
with V# V'

YNy A)y = (=D Ay (19)

Eq. (18) suggests that the coupling constant describing the general case of transition between
baryons belonging to sets with different parameters v % ¥ should be expressible in the
form
ijo
Yiv(dg) = Yu(@) 11 4 @ v y(Ae) (20
1JV

with the unknown factor y}(¢) which cancels out from both sides of Eq. (18) and has the
property that yi(g) is proportional to (—1)""" "% (¢).

Our guess (20) is confirmed if one rewrites the same identity in a different way, adopting
it to the case when in reaction (1) ' = A’ (and in general i # j, i’ # j'). Multiplying both
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sides by [Qi+1(2j+1) (2i'+1)(2j’+1)]”2y(/1’) with real p(1) and using definitions (3)
and (4), we can write the identity as follows

il jl Ul
g CHP=ttICGI =T+ NS Q=D 77" 31 4 ot [2i'+1) 2 +1)]>=

7 I'J'v
ijo
= (=M Dy 114 o [Qi+1) Qi+ D], 1)
I1Jv

where (%), is given by Eq. (13) with y(4) replacing y(4),, which is an indication that
the constant y(4), in Eq. (13) in fact do not depend on v. Eq. (21) has the form of Eq. (2),
and similarly as Eq. (18), implies the validity of the supposed general formula (20) for
the coupling between baryons with i# j, I # J,v # 0 # V. The factor depending on
meson parameters only should satisfy y(1dg)* = (—1)"*y(1A¢) and the factor (—1)°~%'*+®
in Eq. (21) is due to the phase difference between factors y (¢)* and y%(¢) cancelled out
from both sides of Eq. (21).

The simplest choice for the quantity yy(¢) depending on 3 parameters which fulfil
the vector addition rule is 3j-symbo] of SU(2); all the preceding results strongly indicate
that there should exist an identity connecting 3j, 6/ and 9j-symbols, with Egs (A.1),
(14) and (21) as its special cases. In fact there is such an identity (B.1) which we prove
in Appendix B; it can be rewritten in terms of C.-G. coefficients rather than 3j-symbols
and with the general crossing matrices (3) and (4) in the following way

' ijuv ’ ' i’ jl v
Ee e MR AR AR LI
- 3 — @3 V3 I'yv 3 —@P3Vs r>v

ry

ijolr, i

= (—1)PrAtemeste/ti e e’ vV 1o Vv !
v3 @3 V3 v @3 Vs

14 IJVv I

The above equation has the form of Eq. (2) for the general scattering process (1) with
v# 0# v (and 1, 1 integer or half-integer) and provides the following solution for the
coupling constants

ijuo

ijyvvs . . 1 2 v V
Vitovy(Avees) = [(2i+1) (2j+1) 2v+1)]/ [ ¢ ] 14 ¢p y(Aees; Yvy). (23)
v3 973 V3 I J V

The repetitionlabels are R = (V, V3), r = (v, v3), 0 = (@, ¢5) (and in Eq. (22) g = (¢, — ¢3)).
The constants (23) obey Eq. (22) with the restriction

rar 1t

YOV @ — @5 Y =0 y)*9(lhp—gs; Y —vy') =
= (—)PTATeT e s Yoyyy(' A ¢ gy; YY), (24
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The vertex relation (7) determines the factor standing before the C.-G. coeficient in Eq. (23)
and leads to the condition

Yadg—@3; y—oY) = (=D THPTOT 000055 Yoy)®. (25)
Putting Eqs (24) and (25) together, we have

WX @55 y0'Y)  y(Apes; Yoy)*
YA Q@ YUV)  p(dpes; yoY)*

(26)

Setting » = 0in Eq. (26) and making use of the hypercharge conservation: y = ¥, y’ = Y’,
we see that the left-hand side in the above relation becomes unity, which results in

Y(Aees; y'0y) = y(1dpe,; y0y). @7

This means that the free parameters y(1A@@,; y0p) in fact do not depend on the baryon
hypercharge y.

Thus we have been successful in proving that the coupling constants (23) with the
conditions (25), (26) provide the solution to Eq. (2) for the reaction (1) and describe the
decay Bryyvvs = Bijyows Y a0, if v = 0, the coupling constant does not depend
on y =Y. When v =0, we get from Eq. (23) the special cases found earlier: setting
@3 = 0 = ¢ gives Eq. (13) with v = ¥ and y(4), = y(1400)/(2A+1)"/2 (and hence y(%),
indeed does not depend on v); whenv; = 0 = v, weobtain Eq. (1) with g =V, 3 = V¥
and y(14), = YUAVV)IQV +1)'2,

The solution (23) describes the transitions between bands of isobar states Bpypy,
labelled by integer or half-integer index V5 ; each band contains an infinite series of baryons
for each value of the parameter ¥ which runs over the range V' > [V_,,l As opposed to the
solutions (10), the baryons of the solution (23) display the triangular type correlation
between I and J :II — V| < J < I'+V, because otherwise the 9j-symbol in Eq. (23) would
vanish. If we insist that there is only one meson with quantum numbers 1, 4, v which are
sufficient to specify the meson state, then the solution will be given by the sum of expressions
(23) over all the allowed values of the label ¢.

The special cases of the solution (23) for @3 = 0, v = 0 were found previously by
means of the group-theoretical methods in reference [7] for the case 1 =1, ¢ = A1
and in reference [8] for any 1, ¢. The possible physical realisations of the solution (23)
as well as the problem of the isobar mass spectrum will be discussed in a future publi-
cation.

APPENDIX A

In order to prove the identity

21+21§ , , ]/'(,J i/LI I'J v I'J v _
IJoj 1 Jv
2{]’ i)}{j' ; l’}" (A.1)
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we first use expansion of an 9j-symbol in terms of 6j-symbols (e.g. Eq. (24.33) in [5]),
which allows us to perform the sum over I' on the left-hand side of Eq. (A.1)

' - i"A T
E (21'+1){' A IH’. Jl j}{ljlz} = (=D j i}.
J J FJ A
Next, summation over J' with the help of the relation (24.35) (Ref. [5]) yields
i"AT
’ J 2‘ J . . 2J IJ v I J v
(2J+1){-/ ’ I} vj1 =(—1) { }{/ ot oarf 2
Z’ jJAJ T jiAljia
which is (up to the cancelling phase factor) just the right-hand side of Eq. (A.1).

APPENDIX B

Our aim is to obtain the following identity between 3j, 6/ and 9j-symbols

it I jalJ , v ¢ VvV
Z(ZI +1) @y +1){ }{j,A,J,}ZQV +1)<v3—(p'3—V§>x

. INIERNEE
X <v’ _tp —V’) VAt A gt = (—1)rtestetens § (=1 2V +1)x
3 @3 3 I/ JI V/ I/ J/ V/ -
. ijol|i"j v
><<U ¢ V)(”, ? V) 14t 4 gl (B.1)
03(p3 _V3 U3(p3 _V3 IJV IJ V

where (:::) is the 3j-symbol. We will prove Eq. (B.1) by the straightforward summation
of its left-hand side over the variables I’, J', V. To do this we use the following expansions
(e.g. [9], Eq. (C.40¢))

(s, V'W” Z - )(’”)x
vy — g3 — V3 I/Jr$ mymy My, ) \msmy My,

mymamsmy
M12M34

i 1') j A J’>X
my my My, ms my My,

m’ym’om’3m’ 4

1 A @ r Jv Vv’

’ ’ ’ 7 / > (B'2’
<m2 my _(7’3) <M12 M3, —Vs) )

M'12M'34
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and next apply the expansions (e.g. [9], Eq. (C.33))

i I i1 _ (_l)il+‘+1'+M1+M2+M3 i’ 1 T «
mymy, M,/ i’V T M, -M,M,,

MiMa>M;

W I i 1 i
M2 '—J\’Is ml M3 _Ml m2 ?

j A, J’ rj A‘ J} — (_1)]"+2.+]+M1'+M2'+M3'< j’ A’ J/ x
my my M, ij' A z : My —M; M,

Mi'M2'M3’

AT iN\(J J X
% <M’2 _ M, m3> (M; —-M, m4>' (B.3)

By means of Egs (B.2) and (B.3) we expressed the left-hand side of Eq. (B.1) as a sum
which involves the product of 14 3j-symbols; six of them can be summed over in pairs
due to the orthogonality properties of 3j-symbols:

, J, J/ V/
E (2V +1) <M12 M34 V3>< ,12 ]\/I V’3> = 5M12M12'5M34M34’,
z : i r i T 4
(21 +1)< 2 M12> <M1 —'Mz M12> = 6m1'M15m2',"'M2a

I'Ms2
E , JjoA T J AT
(2‘] +1)< 4 M34> <MI M2 M34> - 5m; ‘My' M4 —My'
J'M34

Now the above d-symbols enable us to simplify the sum over magnetic quantum numbers;
changing signs of these numbers in four 3j-symbols and collecting together the resulting
phase factors as well as the phase factors from Egs (B.3), we obtain for the left-hand side
of Eq. (B.1) the expression

§ (__1)20'—1p—¢'+21+2]—¢3—v3'—M3-—M3’[ § <i J U)( l' /"-’ ? 1\«
my mav3) \My My Q3

MiM'; mimama2'ms’

(A Jj><1 I z)][z: <i’ j’v’<1’ Ny
x ! ! ’ ! ! r 7 x
my M3 ms ) \m; M3 m, . my M3 U3 ) \My My @3

3 mama

AT T
X ’ 1 ! . B-4
<m4 3 m3> (mz M, ml)] (B4)

The sum in the first square bracket can be written as

ijo
Vv e TV
2V +1 , 1A ;
z( )<M3M _V3>(03¢3—V3> IJ(II;
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this can be done by taking the first of the identities (B.2) (with primes and the minus sign
J vV .

M, M, —V, ) and using the ortho-

gonality property of the 3j-symbol with respect to summation over V. Similarly the second

square bracket in Eq. (B.4) is equal to

17 ! ! 43 i, j, vl
V ve ¥V
(2VI’ + 1) ( /I) < ! 7 II) l, )’, !
Z MyM; -V 3 — V3 17 gu
Using the fact that M3;+M'; = V'3 = v'3+¢'5s and the orthogonality relation

2 : ., I J vy
@r'+1) <M3 M, —-V3> <M3 A -V':,f) = OpyOy,p s

M3Ma'

before ¢, omitted), multiplying both sides by 2V + 1)<

we obtain finally as a result of summation of the left-hand side of Eq. (B.1)

ijo . iy
(—1yreste oy E (—1)"(2V+1)(Z ; _Z) i1 g (’;, v _5) g,
) = 3 %3 3 1JV 393 3 I1JV
which is just the right-hand side of Eq. (B.1), Q.E.D.
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