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A REVISED NONSYMMETRIC UNIFIED FIELD THEORY
By A. H. KiLorz
Department of Applied Mathematics, University of Sydney*
(Received June 22, 1971)

A further development of the Einstein-Kaufman, nonsymmetric unified field theory
is discussed. Static, spherically symmetric solutions of the field equations are considered.
It is shown that there does not exist a solution corresponding to a magnetic monopole.
In the purely electric case, one of Papapetrou’s solutions is recovered and a new ‘“‘cosmo-
logical” solution is found in which the space-time metric is that of a flat Minkowski world
but a diverging electric field is present. It is pointed out that the theory may be significant
as an account of charged matter.

1. Introduction

In his last attempt to formulate a nonsymmetric unified field theory, Einstein (in
collaboration with Kaufman, Ref. [1]) proposed to use as one set of variational para-
meters a linear combitnation

Uﬁv = Fﬁv"r:aéf (1)

of the components of the affine connection I ﬁv (Greek indices going from 1 to 4). The
object was to ensure that the Ricci tensor R,, should become automatically Hermitian
symmetric (transposition invariant) with respect to the new variables. The Ricci tensor
is of course, Hermitian symmetric with respect to the affine connection but only under
the additional condition

Fn(r;‘tva = %(an.—rgu)) =0 (2)

The other set of variational parameters are the components of the fundamental tensor
density g"*.

The field equations of the theory of Einstein and Kaufman have never been solved
and one aim of this article is to investigate their solution in the case of spherical symmetry.
Actually, we shall solve the field equations of an amended version of the theory.

It has been pointed out recently (Ref. [2]) that the U-substitution is not unique. In
particular, if we write

Iy, =Vh—-1ve,6i—1v 8., 3)
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where
Vv == V(:a' = %( Vja’_ ng)y (4)

then R, still remains Hermitian symmetric with respect to the new variables V5, . Moreover,
one of the sets of the field equations acquires the form of the second set of Maxwell’s
equations for, although ¥, is not a vector, its curl is a tensor. There are some compli-
cations in regarding ¥, as an electromagnetic potential *“pseudo-vector”. Indeed, the static,
spherically symmetric situation which alone we consider herein, is not the best for investiga-
ting the nature of such potentials which is only fully brought out in the time-dependent,
dynamic conditions.

The components of the affine connection in General Relativity and in the Einstein-
-Straus theory (Ref. [3]) are, in general, uniquely determined in terms of the fundamental
tensor and its first derivatives. However, in the present versions of the nonsymmetric
theory, the equations from which U";‘y or V,fv are to be found, happen to be the same.
Consequently a unique solution is impossible except under certain additional conditions
which will be found below. It seems as if the logical elegance of previous theories was
being sacrificed to an excessive insistence on Hermitian symmetry.

‘On the other hand (Ref. [4]), Hermitian symmetry represents the only hypothesis
linking the abstract structure of the theory to physics. Hlavaty recalled Einstein’s inspired
guess that the property gives, in fact, charge conjugation invariance, being therefore in-
dispensible to a theory purporting to unify the macrophysics of gravitation and electro-
magnetism. In addition, there are good reasons (Ref. [S5]) for regarding nonsymmetric
theories as an extension of General Relativity necessary for explaining its own limitation.

Finally, recent cylindrically symmetric solutions of the Einstein-Straus field exqua-
tions (Ref. [6]) have reinforced an early suggestion (of Einstein) that in defining the
electromagnetic field tensors; the parts played respectively by the electric and magnetic
vectors should be reversed. This identification is of great importance to the interpretation
of the results which follow.

As far as the notation is concerned, a comma indicates ordinary partial differentiation.
Also we use Einstein’s notation for the symmetric and the skew-symmetric parts of a two
index object:

A v = Jf(Apv+Avg}v

A, = 5HA,— A,

2. The field equations

The equations (3) which define th affine connection in terms of the new variables Vﬁv
can be solved for the latter (this is a property of the substitution necessary for its usefulness
in a physical theory, Ref. [2]). Thus, from (3)

ry, = _%Vfte_%Vw

e . e . 1lye 3
Feu - Vou 3 Vue 3 Vu’
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whence
Vi = Ti— 77 (1075, —T'%)8,— {5 (I, +2I%)57, Q)
The Ricci tensor is defined by
R, = —Tp ,+1, 4T, —I% T, (6)

In terms of V2 , it becomes

v

Ruv = - VZv,a+ VﬁaVZv_ % VZanv-l_ % (Vv,u_' Vu,v)' (7)
The field equations are derived from a variational principle

8 Cj Hdr =0 ®
where dt = dx'dx?dx3dx* and # is a scalar density.
Following Einstein, we select
H = g"R,,, ©
where
¢ =V-gg",

g is the nonzero determinant of the fundamental (not metric, since we have no a priori
laws of geometrical measurement in the nonsymmetric theory) tensor g,,, and g"" is
defined as usual by

8u::8° =0, = g,,8"

Carrying out the variation with respect to ¢*” and ¥ A under the standard assumption that
all integrated-once parts vanish on the boundary of the region C.

6 J ¢ R,pdt = [ {R,,08" +[g",, +6"(Vy,— 5 Vi,00)+
+87"(Veo— 5 Veado) + 5 (§%,,0,— g,,00)10V,, }dr.

Hence the field equations become

R, =0, 10)
or
- VZV,¢7+meVZv+ Vﬁanv_ % VZanv+ —:} Vva = 0’ (11)
and

Vit ViVoy+ ViVt 3 (ViVy= ViV )+ 1 (V= V) = 0, (12)
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together with
80+ 8" (Voo 5 Va0 + 8" (Voo — 3 Vauo) +
+ ';_ (g}?agé;_g‘?saég) =0 (13)

Contracting (13) first respect to v and o, and then with respect to u and ¢, and subtrac-
ting, we find that

0¥+ 39V~ 36¥Ve, =0,
or
8V, = $6"Vo— 56"V, (14)
Substituting this into (13) and skew symmetrizing with respect to p and v, we obtain
6" et 7 (@Y oo+ 6" Ve =6V 5= 6" Vo) -
— (86" V" Vi) + 8"V —6"VE)] = O,
which, on contraction with respect to v and o, gives
gV, = — £8Ve, + §8"Ve, (15)
Equations {14) and (15) now imply that
g~ =0, (16)
so that equation (13) becomes, as in the Einstein-Kaufman theory
G+ gV, — 5 Vet +e8(Vh, — V5,00 = 0. amn

The symmetry considerations of Papapetrou (Ref. [7]) are not affected by the cho'ce
of ¥}, as a variational parameter instead of I's,. We shall describe below a number of
static, spherically symmetric solutions in the two cases:

i) when the nonzero components of g, are

811,822 = — 1% 833 = ;5502 0, g44 and gy4 = ~g4,,

and
ify when only

811-822.833 = &22 520,244 and g,3 = —g;3,

are not identically zero. In the first case, we shall find that the field equations are incom-
patible, a fact of considerable importance in a physical interpretation of the theory.
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3. The first, or magnetic case

Let us write for the moment

(—a 0 0 w)
0-b 0 0

8w =" 0 0 —bsin260 0|’ (18)
—w 0 0 )

where a, b, ¢ and w are functions of x’ = r only. Then

[ bcsin 8 0 0 wb sin 6 1

Vac—w? ac—w? |
0 —\/ac—wzsinﬂ 0 0

o — - (19)
° 0 0 - \/‘_’C GL 0
sin

wb sin 0 0 0 absin@ |

N Jae—wr |

L Vac—w? \/ac W

where, by the equation (16),

wb

7 = = I, a constant. (20)
vac—w

The solution of the sixtyfour algebraic equations (17) is more complicated than in
Papapetrou’s case because of the occurrence of the terms (¥, ). Only twelve of the V,fv’s
can be seen to vanish without any more conditions. If, however, we also have

11.44

g''g* # g'*, (ac+w? # 0) (21)

then we find that the nonzero components of the pseudo-connection V are

Vf_z — I/:l‘_s _ % 22’ 1/922’ VAI;‘!- — %944, 1/944’
Vie= = 3D[D+Vi;~Vis, 6°°V3, = ¢7V5s = ~ 3 D'g™,
1 3gi* D’
44771 ' 2 3
g V44=911V%1+§D/944’ V%I"V%Z =Z§Hl7a V4v2 = V‘f?

) 3 4 1
Vie =Vi; =Vis =3V, say,
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V3, =3%cot0, V7, = — cot 0 (the condition (21) is not needed for the results so far)
Vi,=Vi, = —1lcot0, Vi = —sinfcos,
V;lzv1 = ngs = V‘2t4 =31V, Vil?’l = V%z = V‘3t4 = 3 V3 (say), (22)

where D = gl1g*+ g4’ (# 0) and D' is the derivative of D with respect to r. The functions
Vi, V,, V5 are arbitrary but, in accordance with the symmetry conditions employed, they
may be assumed to be functions of, at most, r and 8 only. The field equations (11) and (12)
which are not identically satisfied are

—Via+ (V1) + 2V + (V1) = (V1 +2V1+V1)? = 0,
— V221 +2Vi V-1 =0,
—V}M,1+2V‘;§V‘i4 =0, (23)
Vo1—Vi2=0, V3,=0 V,, =0, where V, = V%,,
Vi =0, Vip=0,

together with the equation (20).
Thus, we immediately have

V,=0=V, and V, 2V: g D 24)
= U = an e — = - —
3 4 4\.1 4"2 4 944 D H (
and, from the third of the equations (23),
g LD .
g V11+2— 9—44 = ksin8, k a constant. (25)

In what follows we can clearly omit the #-dependence and, moreover, we can set
up the coordinate system in such a way (Ref. [7]) that

b =ri (26)

Let us write also ¥ = w/a. Then, by (20), D = —r*,

Ie wr? 1
911______’ 922____\/ac_w2=____’ g44____
l u
1w 1 u’ c u
V%Z_‘_E___s VT4='—_, —z—(12+r4)’
= w r — u w 2
L 4 1w 1u
Vii=—=-—7——7— »
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and equation (25) gives on differentiation

, 6r* 2w (w4 .
V== T Ene G T N
Substituting (27) into the first of the equations (23), we find
5r? 3 oW
Pyr* 12 Pyrtw
whence
w=Ar 2exp(— 3 1>r"%, A a constant. (28)

Hence, from (25)

, (6 312 4r3) 2kl
U+ |-+ -z - u=l

b
roor Pyt 2ppt

the integrating factor of which is

s 3,
p= o exp(— ler 4) ,

, 2kt 3, .
(pu)=(—zm;4)—2exp —Z‘Ir .

But, the second of the equations (23)

so that

(QZZV;.Z), = —g°%,
becomes
(FPu) = wr? = Aexp(— 2 r %),

It is readily seen that these equations are not compatible so that there is no solution
of the “magnetic case”. We shall return to a possible interpretation of this result below.

4. The second, or electric case

We consider now

(—a 0 0 0}
—fB r?p sin 0 0
guv = >

| 0 —rPvsing —Bsin?6@ O
L 0 0 0 y
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so that
\/ Br+rt vz) sin @ 0
oy .
guv — 0 —ﬁ \/ﬁz +r4l)2 s
0 __rZ \/ ay
B +r?
0 0
0 0
r’v \/.ﬂ-_ 0
ﬂ2+r4l)2
- 0
b \/ﬁ 1% sin 0
0 \/ (B +r*v?)sin 0
—asin @ 0 0 0
0 —bsing f 0
= b 29)
0 - - 0
4 sin 0
0 0 0 ¢ sin 0 E,

where, as before, a, b, f and c are functions of r only and v corresponds to the magnitude
of the (radial) electric field. As in the case of the Papapetrou solution, the equation (16)
is now identically satisfied and does not furnish us with any information.
The additional condition under which a unique solution of the equations (17) can
be obtained is
(g%3)2— g22g3% £ 0, (30)

when the nonzero components of ¥, become

) 3 16 1 xx
V1_2=V1.1=_:23“51+ 30 Vie= -

Vi = 3 ’+c,+2b' 2xx
1n- Ty b 1+x2

b

4
c

NI =
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1 a a ¢ 2xx’

Vi, =Vijcosec?0= — - ———(— + =~ + —

22 33 4 b(1+x)\a ¢ 1+x?
ylo_ ta/a ¢ +2b' 2xx’
““4c\ac b 1+4x%

p 1 a a’ + c 2x’
= e X| — -
27 4 b(1+xY) a ¢ 1+x2

Vi, = ng‘ cosec’ § = % x’lcis::ﬂ
Vi_z = Vi_z = -V}, =—1coth, V3,=—cotf, V3i;= —sinbcosd,
Vii=Vi=Vie=3Vs Vi =Vi=V5=3Vs say. 31
Notice that we have V; = V, = 0.

Omitting 0-dependence, the relevant field equations are
— Vi + (V1) +2(V1)* + (V1) ~
=3 (Vi +2V 5+ V1) 2V 505, = 0
~ Vg —142V1V 3, +2V55V1, = 0
—Vi4,1+2V‘1‘_4V14 =0
Voy =0, V;,=0

-V;,va,l'*' % V3,2+2Vf_gV§v3+2V:£2Vis =0, (32)

the latter becoming, on eliminating 6-dependence,

— V331 +B=2V3,Vi4+2V3,Vis =0
where B is a constant such that

Vy = 3 Bcos 6.
Since
a
XVa+Va = — b Vi

L L tafa ¢
xVZ}_VZZ:ZE ;+Z s

the V3, and V5 equations may be rewritten in the simpler form

[a (“— + C—)] —4b(Bx+1) = 0,
a [
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and
(@Vi)+bB—-x) = 0.

Also, from the third of the equations (32), we immediately find that

a’ c'+ b'+ 2xx’ k (34)
a ¢ b 1+x*> a’

where k is a constant, whence the first of equations (33) can be written as
(@Vi)+26(Bx+1) = 0,

giving, together with the first of (32) another integral of the second order equations in
the form

1/a \(fk 1a 1¢ b 1 x?
——l=—+—-|-+-—F -~ +2-Bx+D)+ - ——5 =0. 35
4((1 + c)( 2 c>+ a( 1) 2 (1+x%)? (35)

Equations (33), (34) and (35) are therefore four equations for four unknowns, a, b, ¢ and x
and are, in general, compatible.

Some particular solutions of these equations can be easily obtained and we consider
three cases:

i) a Coulomb charge,

ii) a general relativistic form,
and i) a cosmological case,
these names being based on the tentative interpretation of guv as the metric tensor and
of guv as the electromagnetic (electric) field.

5. Some particular solutions
i) The case of an inverse square electric field is characterized by the condition that
qg=r
should be a constatnt. Hence we obtain an additional field equation
a; + % * x(lzsz) =0 (36)
We can eliminate ¢ between the equations (36) and (34) to obtain
a b X k

o= 37
a b+x 2a° 7

while the first of the equations (32) now gives

(i‘_>+‘i“__1’f‘i=o, (38)
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where
x
U= —r—.
Vi+x?

From (37) and (38), we get

Ax’'

= ———-, A a constant,
x“(1+x%)

and we can easily convince ourselves that the remaining field equations cannot be satisfied
except by the absurd x' =0 = b.

Thus a Coulomb solution has no place in our theory.

ii) We call general relativistic the case when

o = 1fy.

Again all the field quantities can be easily eliminated except a and x for which we find
the following three equations

1, 1, 1fax\
"— a4 Skt - = 0,
a3 8" To\1+x2

Bx+1
a"—2—i =0,

\/1+x2
ax’ + 2B-x) 0 39
1+x2 N/1_}_)‘:2 B

of which two are independent.
A particular solution of these equations is

2m\~! k

a=(1———> =y"Y B=r qg=-—r% (40)
r 4m

so that we have a Schwarzschild metric together with a constant radial electric field. This

solution was obtained by Papapetrou for the field equations of the Einstein-Straus-Schrd-

dinger theory. Its recovery here must be regarded as a strong indication that we are on

the right track.
i) In the “cosmological” case we put

v=1=b\/‘-’(1+x2).
[

Hence, from (34) we have
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But, differentiating equation (35) with respect to r, and substituting from (33)

a ¢ 2b“ 2xx’ 2Bx’

+ p— =
a ¢ b 1+x* Bx+1

so that (since B # 0)

that is

Then equations (33) and (35) become

(a(a—+c—>) -4\/1+Bz\/5=0.

a c a
9/a \\? — e

—~-<—+—>> +2\/1+B2\/—=0.
8\a c a

and

b

—— [¢
Eliminating V' 1+B? \/ — ,-integrating and comparing the result with the last equation,
a

we find
a = 1.

Thus, finally we have
'\’ e
<——> —16/(1+BY) Ve = 0,
c
whence

= (1B - 1),
where r, is a constant.
Hence the solution is

1 1

or

_ 1 1
"= AT B Ge—n "

B

1= A4B) (rg—1)

T A+BY (ro—1" T (1+BY (rg—1)*’

T (1B (ro—)?

(41)
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Treating gwv dx" dx’ as the metric invariant we obtain for our space-time
2 dr? 1 d
(1+B») (ro—1)*  (1+B%) (ro,—1)?

Q2 42)

which, on putting
1
Vi+B? (ro—r) ’

becomes the metric of a flat, Minkowski universe

R

ds? = dt* - dR*— R*dQ?,

with a radial electric field of magnitude of the order ~ R4
The condition (30) on the solvability of the equations determining V,fv demands that

Bz # 1.

6. Discussion

The theory discussed in the preceding sections differs considerably from that of
Einstein and Straus in spite of our recovery of one of Papapetrou’s solutions above. A parti-
cularly interesting feature of it is the non-existence, demonstrated in Section 3, of a magnetic
solution. The Papapetrou symmetry conditions imposed represent additional constraints
on the system of field equations. Hence, the incompatibility of the latter in a special case
does not contradict their formal consistency derived from the variational principle (I am
indebted to Prof. G. Szekeres, F.A.A. for pointing this out).

On the other hand, the case of a static, spherically symmetric field can imply only
one physically meaningful conclusion. It is that isolated magnetic charges cannot exist.
As far as I am aware, this is the only purely macroscopic theory in which this is a conse-
quence of an g priori unrelated field structure. In Maxwell’s electrodynamics, for example,
the non-existence of magnetic monopoles can be regarded as axiomatically written into
the theory.

It is impossible at this stage to read too much significance into the results obtained
in the last Section. It is not at all certain that either guv should be interpreted as the metric
tensor or guv as the electromagnetic field. For example, if instead of the latter we took
the tensor suggested by Hlavaty (Ref. [4]), the elastic field in the last of our particular
solutions would turn out to be of the order R? instead of R* However, Hlavaty’s electro-
magnetic field tensor was obtained from the Einstein-Straus theory and there is no reason
to employ it in the present case. Moreover, the way in which our particular solutions
are derived, that is, the simplifying assumptions made, depend on the interpretation
adopted for the components of the fundamental tensor. Finally, it is of some interest
to comment on the relation between our theory and that of Einstein and Kaufman. In
spite of their formal similarity, we cannot conclude that our most striking result, the non-
-existence of magnetic monopoles, is valid also in the latter. It has been mentioned before
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that the static, spherically symmetric case is not the most likely one to throw light on the
physical significance of the functions ¥, ¥,, V; and ¥, whose presence distinguishes
the theory considered herein from the Einstein-Kaufman one. If they were to have some-
tl{ing to do with four-potentials, as the equation (12) suggests, it is most likely that this
would only become apparent if electromagnetism were described by a theory of the type
of Mie’s rather than of Maxwell’s in which only one field tensor has an independent
significance. In other words, we should look for a physical interpretation of our functions
in a theory of charged matter.
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