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REGGEON PERTURBATION THEORY IN A ZACHARIASEN-
-LIKE MODEL*
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Gribov’s Reggeon graph technique is used to construct a simple Zachariasen-like mode
with singularities in the j-plane. Decomposing the scattering amplitude into its one-Reggeon-
-irreducible and reducible parts yields a natural definition of the propagator, the vertex function,
the formfactor and the renormalization constants of an intermediate Reggeon.

1. Introduction

During the last years a great many articles have been written concerning the connection
between compositeness and vanishing renormalization constants of elementary particles [1]
using to a large extent .deas put forward by Salam in 1962 [2]. In this kind of problem
the decomposition of a partial wave scattering amplitude into its one particle-reducible
and irreducible parts is a very useful tool in defining field-theoretical quantities of
stable or unstable particles such as the propagator, the vertex function or the renormali-
zation Constants by means of on-shell quantities like the' denominator function D of
an N/D representation of the amplitude [3, 4].

Using Gribov’s Reggeon graph technique [5] we construct in this note a simple Za-
chariasen-like model for a Reggeon scattering amplitude with a Reggeon coupling of the
Yukawa- and Fermi-type. The decomposition of this amplitude into its one-Reggeon
irreducible and reducible parts in the j-plane yields, then, a natural definition of the pro-
pagator, the vertex function, formfactor and renormalization constants of an inter-
mediate Reggeon, i.e. of stable or unstable particles lying on a Regge trajectory. This
model automatically takes into account also some amount of inelasticity by considering
two-body intermediate states of higher spins.

* Part of an invited talk given at the VIII Winter School, Karpacz 1971, Poland.
** Address: Sektion Physik der Humboldt-Universitét zu Berlin, Berlin, DDR.
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2. Definition of the model

Let us first remind the Reggeon graph technique developed by Gribov in studying
the high energy behaviour of Feynman graphs. The Gribov rules read:

i) Reggeons are described as nonrelativistic particles n two dimensional momentum
space with a free propagator [j— a(k®)] .

iif) At each vertex the two-dimensional momenta k are conserved. A n-Reggeon

intermediate state of spin j contributes a factor [j—) ji+(n—D}*
i=1
iii) Integrate over the two-dimensional momentum & and the angular momentum j
of each intermediate Reggeon.
To be definite we consider now a simple model of identical Reggeons interacting
via a Yukawa- and Fermi-coupling with a Lagrangian

Lio = glyty v +ypypyt ]+ Ay  yryy] 0]
where

¥(r) = ijake"" @

is the nonrelativistic field operator in two-dimensional space and g, A are coupling functions
which will be specified later.

The perturbation graphs for the Reggeon-Reggeon scattering amplitude a(f; ¢,2,¢5%,)
with the external Reggeons on their angular momentum shell j; = «(#;) as given in Fig. 1
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Fig. 1. Perturbation series of the four-Reggeon scattering amplitude a;

(t = (p,+p,)* = (p3+ps)% 1; = p}) can then easily be summed up by means of an
equation of the Bethe-Salpeter-type according to Fig. 2.
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Fig. 2. Graphical representation of the Bethe-Salpeter equation of g;
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* One can also introduce the equivalent factor

P
8G— Yy jit(n—1)
i=1

corresponding to a conservation of j—1 at each vertex.
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Evaluating the j, and j, integration, we get explicitly

4
) g%(1)
at; tityt5t) = R(i; (315, 131,) gty) A+ ——— +
J—o(t)
i=1

dtidty0(—1) a(t; 1ysti15)a t; th1ht5t,)

s G ©
(-9 J— (1) +a(tz)—1)
where 7 is the triangle function
wt, t,,1,) = P H15415=2tt, =21t~ 2,1,
R(t; 1,15, t3t4) — qj——a(tl)-a(tz)(t’ 1112) . qf—a(ts')—a(tat)(t’ t3t4) (4)

and q is the incoming or outgoing 3-momentum.

In Eq. (3) we have taken into account a threshold factor R as it is given by coupling
particles with spin according to j; +j, — j = j; +j, with the external Reggeons on their
angular momentum shell j; = a(#;). Further more we have assumed a factorizable depen-
dence on external masses of the 3- and 4-Reggeon coupling functions

g = g(t,)8(12)8(1), (g(23)8(1)8(1))
A= I=]1 g(t)A )

1/, -

resulting in a neglection of Toller angle dependences. Finally, 8(—7)(~1)~ '2is the Jacobian

for the transformation d* — dt,dt,.
Due to the factorizable kernel, Eq. (3) can be solved algebra‘cally with the solution

4
.
R(t; 15, tats) H g() {A n fﬂ}
I} Jj—a(t)

40 } (6)
J=a®)

aft; titytsty) = FJ =

where

didty0(—1) R(t; 1315, 1115)g*(1)g*(ty)
(-7 J—=(a(t) +a(ty)—1)

Hit) = ™)

is the contribution of a two Reggeon bubble.

Eq. (6) is completely analogous to the usual combined Zachariasen-model [6] with the
replacement of the particle poles and the unitarity cuts in the energy plane by the Regge
pole and the AFS-cuts [7] in the angular momentum plane j.
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3. Field-theoretical decomposition in the j-plane

As can be seen, with some algebra, Eq. (6) admits a field-theoretical decomposition
into its one-Reggeon reducible and irreducible parts according to

4
ajt; titytsty) = R(E; 135, 131,)8°(0) I——In gL (DAL (1) +

+b(t; tytytsts) t)

where the vertex function I'j(t), the propagator A}(t) and the one-Reggeon irreducible
amplitude b are defined by
rt=1-Hnn™!
A = — (1 ()E,(0) — )
T jal) R0
Iy =Ht(1-H A"

4

| A
bit;tttsty) = R(t; t,t,, tst 1) —— =
j( 1t2t3ts) (t; 1115, tsty) Ig()l—Hj(t)A

i=1

4
= R(t; t,1;, t315) [ g(t)AT (1) ©)
i=1
One can further introduce a Reggeon form factor (improper vertex) by
Fft) = D7'(t) (10)
satisfying the relation

F(ty JT(I) = T (0d0) (11)

which is the j-plane analogue of a corresponding formula defined in the energy plane [4].

Fig. 3. The diagrams representing the decomposition (8)

The diagram version of Egs (8), (9), (10) is given in Fig. 3 and Fig. 4. The renorma-
lized pole position is now given according to Eq. (9) by the solution of the equation

6 (=) = g* (00" (12)
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or, because of Eq. (8), by the vanishing of the denominator function of Eq. (6). Depending
on the sign of D(t) at the position of the branch point jyrs = 2a(#/4)—1 of the AFS-cut
we obtain then, at most, two out-put Regge poles (if D;,prs << 0) lying below and above
the unrenormalized input Regge pole «(r).

Let us next perform the renormalization of the leading Regge pole by extending
the usual renormalization prescriptions of the energy plane to the j-plane. Thus, we define

s
@Zr:jig
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Fig. 4. Perturbation series of the vertex function, the propagator, the self-energy part, the amplitude »
and the formfactor

the “wave function renormalization constant” Z,(¢) of the Reggeon by the residue of the
unrenormalized propagator, i.e.

o -1
Zy(1) = (1 -2 a 2;(‘)1;=a,(¢)) (13)

and the ‘‘vertex renormalization constant’ Z,(¢) by the reciprocal value of the unrenor-
malized vertex at the renormalized pole position
Z,() =1-H, 1) A. 149
If we introduce renormatized coupling functions by*
gH1) = (Z(]ZINgX1);  (Zy() = 1)
ALt) = A[Z(t) (15)

the renormalization constants can be expressed by renormalized quantities according to

Zy(h) = 1+ X1 aﬁ-’@
9 lj=am
Z,(1) = (1 +H, (DA™ (16)

* The renormalization of external Reggeons will not be considered here.
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Defining now

1
r{n = 2,(0r( = (1—(3— ,(I))[ 0= (5’( )] At ))

470 = Z7' (04 (17)

we can rewrite Eq. (8) by renormalized quantities as follows

ajt; titatsty) = R(t; 1115, 1514) [gr(t) H g (AT (O (1) +

+ [Il gt)A(DHI(D]. (18)
Note that
4 ~ j! (19)

With Egs (16) and (17) the renormalization constant Zs(f) can also be expressed by the
renormalized function 47(r) as
Z3 (1) = lim (j47(2). (16"
Jjooe
We remark that the usual s-wave pseudopoles of the Zachariasen-model [1] which appear
in the vertex function and the b;-amplitude are now transformed into pseudo-Regge poles.
It is easily seen that such poles cancel each other in Eq. (8), as it should be, since a; is
free of them. It is worth mentioning that the Regge pole parameters gX(t) and a{t) were
up to now entirely arbitrary.
Although being analytic in the j-plane (absence of Kronecker d;,-factors) the inter-
mediate Reggeon should be interpreted therefore as an elementary object. Performing

now the limit
¢H
- 0, (T < 0) (20)
=) GJ |jma,

one obtains a connection between g,.(r) and of) and thus a reduction of free para-
meters. In this limit we have a composite Reggeon.*

¢H (1)
Zy(t) = 1+gHt) — ==
)

4. Conclusion

We have shown in a simple Zachariasen-like model that the scattering amplitude
possesses a field-theoretical decomposition in the j-plane and that renormalization of
Regge poles can be defined along the line of usual particle renormalization. Since two-

* Note that Z,(¢) and Z(#) possess two-particle cuts. The continuation through such a cut to a complex
value t = m} = «;'(j) yields complex constants Zy(m}), Z,(m?}) for resonances which correspond to the
ZJ and Z7 introduced in Ref. [4].
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-Reggeon intermediate states correspond to two-body states with high spin particles,
this model takes als into account, automatically, some amount of inelasticity. Expressions
similar to Eq. (6) (1 = O) are expected to occur also in the dual perturbation theory
by summing up multiloop diagrams. Considering the work of Neveu and Scherk [8] we
should replace then H (¢) by the following self-energy-type expression of the dual resonance
model

1

dx,dx
Z(dt) = 47{2 J\l__z_i__t (x2x4)*azo— 1(1 __x2)~ 1 +do(1 _ x4)— L+ag %
n% X,X,
0
x &g H(x,x,) 172 — e — x, — x,) (21)

where the functions Ay, H, q, are defined in [8]. This formula also contains daughter
contributions which were not considered in our simple model.

It is a pleasure for me to thank Professor F. Kaschluhn, Professor D. Bebel and Dr
E. Wieczorek for useful discussions.
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