REGGEON PERTURBATION THEORY IN A ZACHARIASEN--LIKE MODEL*

By D. EBERT.

Department of Physics, Humboldt University, Berlin**

(Received June 26, 1971)

Gribov's Reggeon graph technique is used to construct a simple Zachariasen-like mode with singularities in the j-plane. Decomposing the scattering amplitude into its one-Reggeon-irreducible and reducible parts yields a natural definition of the propagator, the vertex function, the formfactor and the renormalization constants of an intermediate Reggeon.

1. Introduction

During the last years a great many articles have been written concerning the connection between compositeness and vanishing renormalization constants of elementary particles [1] using to a large extent deas put forward by Salam in 1962 [2]. In this kind of problem the decomposition of a partial wave scattering amplitude into its one particle-reducible and irreducible parts is a very useful tool in defining field-theoretical quantities of stable or unstable particles such as the propagator, the vertex function or the renormalization constants by means of on-shell quantities like the denominator function D of an N/D representation of the amplitude [3, 4].

Using Gribov's Reggeon graph technique [5] we construct in this note a simple Zachariasen-like model for a Reggeon scattering amplitude with a Reggeon coupling of the Yukawa- and Fermi-type. The decomposition of this amplitude into its one-Reggeon irreducible and reducible parts in the *j*-plane yields, then, a natural definition of the propagator, the vertex function, formfactor and renormalization constants of an intermediate Reggeon, *i.e.* of stable or unstable particles lying on a Regge trajectory. This model automatically takes into account also some amount of inelasticity by considering two-body intermediate states of higher spins.

^{*} Part of an invited talk given at the VIII Winter School, Karpacz 1971, Poland.

^{**} Address: Sektion Physik der Humboldt-Universität zu Berlin, Berlin, DDR.

2. Definition of the model

Let us first remind the Reggeon graph technique developed by Gribov in studying the high energy behaviour of Feynman graphs. The Gribov rules read:

- i) Reggeons are described as nonrelativistic particles n two dimensional momentum space with a free propagator $[j-\alpha(k^2)]^{-1}$.
- ii) At each vertex the two-dimensional momenta k are conserved. A n-Reggeon intermediate state of spin j contributes a factor $[j-\sum_{i=1}^{n}j_i+(n-1)]^{-1}$.*
- iii) Integrate over the two-dimensional momentum k and the angular momentum j of each intermediate Reggeon.

To be definite we consider now a simple model of identical Reggeons interacting via a Yukawa- and Fermi-coupling with a Lagrangian

$$L_{\rm int} = g[\psi^+ \psi^+ \psi + \psi \psi \psi^+] + \lambda [\psi^+ \psi^+ \psi \psi] \tag{1}$$

where

$$\psi(r) = \sum_{k} a_k e^{ikr} \tag{2}$$

is the nonrelativistic field operator in two-dimensional space and g, λ are coupling functions which will be specified later.

The perturbation graphs for the Reggeon-Reggeon scattering amplitude $a_j(t; t_1t_2t_3t_4)$ with the external Reggeons on their angular momentum shell $j_i = \alpha(t_i)$ as given in Fig. 1

Fig. 1. Perturbation series of the four-Reggeon scattering amplitude a_i

 $(t = (p_1 + p_2)^2 = (p_3 + p_4)^2$; $t_i = p_i^2$) can then easily be summed up by means of an equation of the Bethe-Salpeter-type according to Fig. 2.

Fig. 2. Graphical representation of the Bethe-Salpeter equation of a_j

$$\delta(j-\sum_{i=1}^p j_i+(n-1))$$

corresponding to a conservation of j-1 at each vertex.

^{*} One can also introduce the equivalent factor

Evaluating the j_1 and j_2 integration, we get explicitly

$$a_{j}(t; t_{1}t_{2}t_{3}t_{4}) = R(t; t_{1}t_{2}, t_{3}t_{4}) \prod_{i=1}^{4} g(t_{i}) \left\{ \Lambda + \frac{g^{2}(t)}{j - \alpha(t)} \right\} +$$

$$+ \int \frac{dt'_{1}dt'_{2}\theta(-\tau)}{(-\tau)^{1/2}} \frac{a_{j}^{0}(t; t_{1}t_{2}t'_{1}t'_{2})a_{j}(t; t'_{1}t'_{2}t_{3}t_{4})}{j - (\alpha(t'_{1}) + \alpha(t'_{2}) - 1)}$$
(3)

where τ is the triangle function

$$\tau(t, t_1, t_2) = t^2 + t_1^2 + t_2^2 - 2tt_1 - 2tt_2 - 2t_1t_2,$$

$$R(t; t_1t_2, t_3t_4) = q^{j - \alpha(t_1) - \alpha(t_2)}(t, t_1t_2) \cdot q^{j - \alpha(t_3) - \alpha(t_4)}(t, t_3t_4)$$
(4)

and q is the incoming or outgoing 3-momentum.

In Eq. (3) we have taken into account a threshold factor R as it is given by coupling particles with spin according to $j_1 + j_2 \rightarrow j \rightarrow j_3 + j_4$ with the external Reggeons on their angular momentum shell $j_i = \alpha(t_i)$. Further more we have assumed a factorizable dependence on external masses of the 3- and 4-Reggeon coupling functions

$$g \equiv g(t_1)g(t_2)g(t), \ (g(t_3)g(t_4)g(t))$$

$$\lambda \equiv \prod_{i=1}^4 g(t_i)\Lambda \tag{5}$$

resulting in a neglection of Toller angle dependences. Finally, $\theta(-\tau)(-\tau)^{-1/2}$ is the Jacobian for the transformation $d^2k \to dt'_1 dt'_2$.

Due to the factorizable kernel, Eq. (3) can be solved algebraically with the solution

$$a_{j}(t; t_{1}t_{2}t_{3}t_{4}) = \frac{N_{j}}{D_{j}} = \frac{R(t; t_{1}t_{2}, t_{3}t_{4}) \prod_{i=1}^{4} g(t_{i}) \left\{ \Lambda + \frac{g^{2}(t)}{j - \alpha(t)} \right\}}{1 - H_{j}(t) \left\{ \Lambda + \frac{g^{2}(t)}{j - \alpha(t)} \right\}}$$
(6)

where

$$H_{j}(t) = \int \frac{dt'_{1}dt'_{2}\theta(-\tau)}{(-\tau)^{1/2}} \frac{R(t; t'_{1}t'_{2}, t'_{1}t'_{2})g^{2}(t'_{1})g^{2}(t'_{2})}{j - (\alpha(t'_{1}) + \alpha(t'_{2}) - 1)}$$
(7)

is the contribution of a two Reggeon bubble.

Eq. (6) is completely analogous to the usual combined Zachariasen-model [6] with the replacement of the particle poles and the unitarity cuts in the energy plane by the Regge pole and the AFS-cuts [7] in the angular momentum plane j.

3. Field-theoretical decomposition in the j-plane

As can be seen, with some algebra, Eq. (6) admits a field-theoretical decomposition into its one-Reggeon reducible and irreducible parts according to

$$a_{j}(t; t_{1}t_{2}t_{3}t_{4}) = R(t; t_{1}t_{2}, t_{3}t_{4})g^{2}(t) \prod_{i=1}^{4} g(t_{i})\Gamma_{j}(t)\Delta'_{j}(t)\Gamma_{j}(t) + b_{j}(t; t_{1}t_{2}t_{3}t_{4})$$
(8)

where the vertex function $\Gamma_j(t)$, the propagator $\Delta'_j(t)$ and the one-Reggeon irreducible amplitude b are defined by

$$\Gamma_{j}(t) = (1 - H_{j}(t)\Lambda)^{-1}$$

$$\Delta'_{j}(t) = \frac{1}{j - \alpha(t)} \left(1 - g^{2}(t)\Sigma_{j}(t) \frac{1}{j - \alpha(t)} \right)^{-1}$$

$$\Sigma_{j}(t) = H_{j}(t)(1 - H_{j}(t)\Lambda)^{-1}$$

$$b_{j}(t; t_{1}t_{2}t_{3}t_{4}) = R(t; t_{1}t_{2}, t_{3}t_{4}) \prod_{i=1}^{4} g(t_{i}) \frac{\Lambda}{1 - H_{j}(t)\Lambda} =$$

$$= R(t; t_{1}t_{2}, t_{3}t_{4}) \prod_{i=1}^{4} g(t_{i})\Lambda\Gamma_{j}(t). \tag{9}$$

One can further introduce a Reggeon form factor (improper vertex) by

$$F_{i}(t) = D_{i}^{-1}(t) {10}$$

satisfying the relation

$$F_j(t) \cdot \frac{1}{j - \alpha(t)} = \Gamma_j(t) \Delta'_j(t) \tag{11}$$

which is the j-plane analogue of a corresponding formula defined in the energy plane [4].

$$\frac{\partial^2 u}{\partial u^2} = \frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial u^2} \frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial u^2} \frac{\partial^2 u}{\partial u^2}$$

Fig. 3. The diagrams representing the decomposition (8)

The diagram version of Eqs (8), (9), (10) is given in Fig. 3 and Fig. 4. The renormalized pole position is now given according to Eq. (9) by the solution of the equation

$$\alpha_r(t) - \alpha(t) = g^2(t) \Sigma_{\alpha_r(t)}(t)$$
 (12)

or, because of Eq. (8), by the vanishing of the denominator function of Eq. (6). Depending on the sign of $D_j(t)$ at the position of the branch point $j_{AFS} = 2\alpha(t/4) - 1$ of the AFS-cut we obtain then, at most, two out-put Regge poles (if $D_{j_{AFS}} < 0$) lying below and above the unrenormalized input Regge pole $\alpha(t)$.

Let us next perform the renormalization of the leading Regge pole by extending the usual renormalization prescriptions of the energy plane to the j-plane. Thus, we define

$$\sum_{j} = \sum_{i} + \sum_{j} + + \sum_{j$$

Fig. 4. Perturbation series of the vertex function, the propagator, the self-energy part, the amplitude b and the formfactor

the "wave function renormalization constant" $Z_3(t)$ of the Reggeon by the residue of the unrenormalized propagator, i.e.

$$Z_3(t) = \left(1 - g^2(t) \frac{\partial}{\partial j} \Sigma_j(t)|_{j = \alpha_r(t)}\right)^{-1}$$
(13)

and the "vertex renormalization constant" $Z_1(t)$ by the reciprocal value of the unrenormalized vertex at the renormalized pole position

$$Z_1(t) = 1 - H_{\alpha_n(t)}(t) \cdot \Lambda. \tag{14}$$

If we introduce renormalized coupling functions by*

$$g_r^2(t) = (Z_3(t)/Z_1^2(t))g^2(t); (Z_2(t) \equiv 1)$$

$$\Lambda_r(t) = \Lambda/Z_1(t) (15)$$

the renormalization constants can be expressed by renormalized quantities according to

$$Z_3(t) = 1 + g_r^2(t) \frac{\partial H_j(t)}{\partial j} \bigg|_{j = \alpha_r(t)}$$

$$Z_1(t) = (1 + H_{\sigma_r(t)}(t) \Lambda_r(t))^{-1}.$$
(16)

^{*} The renormalization of external Reggeons will not be considered here.

Defining now

$$\Gamma'_{j}(t) \equiv Z_{1}(t)\Gamma_{j}(t) = \left(1 - (j - \alpha_{r}(t))\left[\frac{H_{j}(t) - H_{\alpha_{r}}(t)}{j - \alpha_{r}(t)}\right]\Lambda_{r}(t)\right)^{-1}$$

$$\Delta''_{j}(t) \equiv Z_{3}^{-1}(t)\Delta'_{j}(t) \tag{17}$$

we can rewrite Eq. (8) by renormalized quantities as follows

$$a_{j}(t; t_{1}t_{2}t_{3}t_{4}) = R(t; t_{1}t_{2}, t_{3}t_{4}) \left[g_{r}^{2}(t) \prod_{i=1}^{4} g(t_{i}) \Gamma_{j}^{r}(t) \Delta_{j}^{r}(t) \Gamma_{j}^{r}(t) + \prod_{i=1}^{4} g(t_{i}) \Lambda_{r}(t) \Gamma_{j}^{r}(t) \right].$$

$$(18)$$

Note that

$$\Delta'_{j}(t) \underset{j \to \infty}{\to} j^{-1} \tag{19}$$

With Eqs (16) and (17) the renormalization constant $Z_3(t)$ can also be expressed by the renormalized function $\Delta_j^r(t)$ as

$$Z_3^{-1}(t) = \lim_{j \to \infty} (j\Delta_j''(t)). \tag{16'}$$

We remark that the usual s-wave pseudopoles of the Zachariasen-model [1] which appear in the vertex function and the b_j -amplitude are now transformed into pseudo-Regge poles. It is easily seen that such poles cancel each other in Eq. (8), as it should be, since a_j is free of them. It is worth mentioning that the Regge pole parameters $g_r^2(t)$ and $\alpha_r(t)$ were up to now entirely arbitrary.

Although being analytic in the j-plane (absence of Kronecker δ_{jj} -factors) the intermediate Reggeon should be interpreted therefore as an elementary object. Performing now the limit

$$Z_{3}(t) = 1 + g_{r}^{2}(t) \frac{\partial H_{j}(t)}{\partial j} \bigg|_{j = \alpha_{r}(t)} \to O, \quad \left(\frac{\partial H}{\partial j} \bigg|_{j = \alpha_{r}} < 0\right)$$
 (20)

one obtains a connection between $g_r(t)$ and $\alpha_r(t)$ and thus a reduction of free parameters. In this limit we have a composite Reggeon.*

4. Conclusion

We have shown in a simple Zachariasen-like model that the scattering amplitude possesses a field-theoretical decomposition in the j-plane and that renormalization of Regge poles can be defined along the line of usual particle renormalization. Since two-

^{*} Note that $Z_3(t)$ and $Z_1(t)$ possess two-particle cuts. The continuation through such a cut to a complex value $t = m_j^2 \equiv \alpha_r^{-1}(j)$ yields complex constants $Z_3(m_j^2)$, $Z_1(m_j^2)$ for resonances which correspond to the Z_1^j and Z_2^j introduced in Ref. [4].

-Reggeon intermediate states correspond to two-body states with high spin particles, this model takes als into account, automatically, some amount of inelasticity. Expressions similar to Eq. (6) ($\lambda \equiv O$) are expected to occur also in the dual perturbation theory by summing up multiloop diagrams. Considering the work of Neveu and Scherk [8] we should replace then $H_j(t)$ by the following self-energy-type expression of the dual resonance model

$$\Sigma(\alpha_t) = 4\pi^2 \int_0^1 \frac{dx_2 dx_4}{\ln^2 x_2 x_4} (x_2 x_4)^{-\alpha_0 - 1} (1 - x_2)^{-1 + \alpha_0} (1 - x_4)^{-1 + \alpha_0} \times \\
\times e^{\alpha_0 h_1} q_0^{-4} \lceil (x_2 x_4)^{1/2} \rceil e^{\alpha_t H(x_2, x_4)} \theta(2 - \varepsilon - x_2 - x_4)$$
(21)

where the functions h_1 , H, q_0 are defined in [8]. This formula also contains daughter contributions which were not considered in our simple model.

It is a pleasure for me to thank Professor F. Kaschluhn, Professor D. Bebel and Dr E. Wieczorek for useful discussions.

REFERENCES

- [1] K. Hayashi et al., Fortschr. Phys., 15, 625 (1967), (see for further references).
- [2] A. Salam, Nuovo Cimento, 25, 224 (1962).
- [3] M. Ida, Progr. Theor. Phys., 36, 799 (1966). F. Kaschluhn, Nuovo Cimento, 40, 1216 (1965).
- [4] D. Ebert, E. Wieczorek, Ann. Phys. (Germany), 25, 269 (1970); D. Ebert, E. Wieczorek, Monatsber. Akad., 12, 579 (1970).
- [5] V. N. Gribov, Zh. Eksper. Teor. Fiz., 53, 654 (1967).
- [6] W. Thirring, Theoretical Physics, Vienna 1963, and Ref. [1].
- [7] D. Amati, A. Stanghellini, S. Fubini, Nuovo Cimento, 26, 6 (1962).
- [8] A. Neveu, J. Scherk, Phys. Rev., D 1, 2355 (1970).