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ABOUT A SPECIAL METHOD IN S-MATRIX THEORY WITH
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A regularization method in the Kadyshevsky momentum representation for the boson-
-boson and boson-photon interactions is applied.

1. The Bogolyubov renormalization method

Let us consider a system of interacting fields with the interaction Lagrange operator
Z\(x). The standard formula for the S-operator describing this interaction, derived as
an iterative solution of the Schrédinger equation in the interaction representation, can
be expressed as follows:

S=1+iY 7, =
m—1
TP N 'Us,,(xl X%y . dtx, (1.1)
L n!
where
Sy = T[ZL(x)... £, (x,)] (1.2)
or in the symbolic form
S = Texp [i [ £, (x)d*x]. (1.1

In order to interpret some singularities we meet in the calculation of S-matrix elements,
Bogoliubov tried to give the most general form of the S-operator terms which satisfy the
causality, unitarity, covariance and symmetry conditions. A method was found [1], which
enabled a definition to be given of the S,(x,...x,) term, when §,...S,_, are given. (With
the choice S;(x) = Z;(x).)
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These four conditions however do not determine the S,-operator uniquely; we can
add to it any hermitian operator A,(x,...x,), which satisfies two following conditions:

1. It must be symmetrical in the x,...x, variables (this is connected with the symmetry
condition for S,).

2. It must be equal to zero except for those cases, when all variables are equal

xl=X2=...=xn

(following from the causality condition for the S-operator).

Such operators are called quasilocal. Their most general form can be expressed as a sum,
each term of which must be a normal product of field operators with a “function coefficient”
of the form:

Z(...0x;..)0(x; — x3)...0(x,_ — x,),

where Z(...0x;...) is a symmetric polynomial of partial derivatives with constant coeffi-
cients. Hence, the quasilocal operator can be expressed as follows:

A%y oo X)) = D Z( 0% )80, — X2)e s O(Xp— y — X,) i@ (X)- . @y (%) (1.3)

where the indices r;...r; are connected with several kinds of field operators in the r-term.
The form of the Z, polynomials and the structure of the normal products may be chosen
freely.

In his work [1] Bogolyubov explained the connection between these quasilocal
operators and the S-operator renormalization procedure.

It was shown there, that the addition of the quasilocal operators to the S-operator
terms can be replaced by a modification of the Z{x) operator as follows:

_ 1
Z(x) = Li(x)+ g - j ALX, Xy ooy Xy )d¥ %, Lo dx, . (1.4)
v
v=1

Inserting #;(x) into (1.1), and collecting the terms with equal number of integrations
we obtain a general expression for the S,-operator ({1}, page 159), which satisfies all the
required conditions.

For example:

Sa(xy, x2) = iT[L1(x) L1 (x2) ]+ Ay(xy, X3), (1.5)
S3(xy, X3, x3) = —T[Lx) L1 (x2) L1 (x3) ]+ iIT[ L (x) Ax(x2, X3) ]+
FHiT[ZL1(x2) Ay(x1, X3) 1 +IT[Ly(x3) A5(x1, X2) 1+ A3(xy, X2, X3). » (1.6)

As it is well known, the calculation of the &, terms (1.1) is connected with certain mathe-
matical difficulties arising from the existence of singularities of the integrals over the
momenta of the internal lines of the Feynman diagrams. After the regularization of Pauli
and Villars we separate the regular parts of these integrals, but their singular parts need
interpretation.
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In this point we can make use of the Bogolyubov quasilocal operators, because it
happens that the singular parts have always a quasilocal form. We insert that part with
an opposite sign into the modified .2, (x) operator (1.4), and now the calculation of the 7,
term with the application of the modified operator &;(x) will certainly lead to a regular
result.

Another problem is the connection between the #£(x) n-order modification and the
regularization of the other 7, terms (where »’ > n). It is intuitively clear that each n-order
diagram is a construction part of some »n'-order diagrams. Bogolyubov showed that the
modification of the operator #;(x) coming from the n-order diagrams gives automatically
aregularization of those singularities in the n’~order terms, which are connected with the
construction parts mentioned above.

However, in order to obtain a full regularization of the 7, term, we must modify
the Z(x) operator by a new, characteristic to that order of approximation, quasilocal
operator A, (x;...x,) efc.

For example, let us consider the Si(x;, x,, x3) operator (1.6). Without the modifi-
cation of the #|(x) operator it would have a form identical with the first term:
—T[ZLUx )L (x)ZL(x;)] Its integration in the momentum representation (after the
application of the Wick theorem) gives the clasic singularities connected with some terms
of the Wick expansion (with some Feynman diagrams). The second, third and fourth
terms will eliminate singularities arising from these diagrams. In order to get free from
the singularities arising from the characteristic third order diagrams, we must insert the A,
term (the fifth addend).

2. The Kadyshevsky momentum representation

The S-operator in the form similar to (1.1') after the application of the Wick theorem
can be interpreted as usual by the Feynman diagrams. The singularities we meet, while
calculating the S-operator terms, are connected with the infinit integration ranges of the
integrals over the propagator moments and this forces us to renormalize the masses and
coupling constants of the fields represented by the propagators mentioned above.

The momentum representation we are about to explain introduces some modifications
to the Feynman interpretation, and therefore to the renormalization process. Let us
consider the term 7, (1.1) in its “primary” form, i.e. with the application of Heaviside
O(x°) function:

Tp= """ O] =x9)... O —xNL((x))... Lx)d*x; ... d*x, .1

where
Ox%) =0 for x®°<0
Ox®) =1 for x°>0
or in the equivalent form
T =" O@ (x;=x2)...O0 * (Xy_1 =X NLe(x)).. Lo(x)dx, .. .d*x,  (2.1")

where 1 is a 4-vector on the upper mass shell A2 = 1, 1° > 0.
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The equivalence of these two formulas follows from the commutation of the Z,(x)
operators:
[Z1x), Z(»)] =0 for (x—y)*<0.
Let us convert to the momentum representation:

1

i) = e

Je‘""‘.s?( p)d*p. 2.2)

We express the Heaviside function as a Fourier transformate:

1 —itA-x

O x)= — — — dt,
2ni ] 1+ie
Arx = l°x°—z-§,

prx= poxo_,; - X
It is now easy to show, that:

Ty = 2/0)

+w

1 ~ dr .
Ty=~ = J F A1) — L(— A1)
2n T+1ig

+ w
1yt N dr,
‘7" = — .,?I(At]) - 'gl(—}"rl +l€2)...
2 Ty +ie

dtn— 1

.. — P (=1 y). (2.3)
Ty + i€

In order to show the Kadyshevsky graphical interpretation we must use a definite
interaction model, for example:

Lx) = e : p¥x): (2.4)

which can be converted into momentum representation:

. 1
(A1) = Nz f5(lr— Z ko):p(k ) plky)p(ks)p(k,): x

x d*k, ... d*k,. (2.5)
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We give a graphical interpretation to this expression:

Fig. 1

where full lines represent the physical fields ¢(k), and the dotted line with momentum Az
follows from the argument of the 6 — Dirac function (2.5). Let us call it a quasiparticle
line. Thus for 7, = 2(0) we obtain the diagram:

Fig. 2

and for 77, (after the application of the Wick theorem):

Fig. 3

The propagator function (the contraction of the field operators) for the scalar field (k) is:
p(k)g(p) = 8(p+k)OK)S(k* —m?) = 5(p+k)D(k) (2.6)
—

where k is the fourmomentum transferred on the propagator. The @(k°) factor existing in
the propagator function enables energy to be transferred in one direction along the internal
line (for example from left vertex to the right; the numeration of the vertexes is identical
with the succession of the #;(x) operators in the 9, term). The particular kinematic
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analysis [2] shows that the momenta on the internal field lines are limited in that graphical
interpretation, and that only the momenta of the quasiparticles can be infinite.

Thus we integrate over the internal lines, as follows. At first the integration over the
internal physical lines (full lines) must be performed (these integrals have finite limits,
so they are regular and become functions of Az, i.e. of the quasiparticle line momentum).
Then we integrate over the T parameter and in general we meet singularities in this integral.
The Pauli and Villars regularization, as always, brings this integral into a finite and a sing-
ular part A,. The A, operator after rewriting it into the x-representation becomes a quasi-
local operator and can be inserted into the modified #,(x) operator (1.4). The treatment
of the next 7, terms is quite similar. The momentum Kadyshevsky representation therefore
liberate us from the internal physical lines regularization, because all singularities are
“pushed down” to the internal quasiparticle lines.

The authors of this work calculated the quasilocal operators in the second order of
approximation for two models of interaction:

1. Zix) =e: ¢¥x):

*
2. Zx) = e p(x)A*(x)A,(x)p(x): 2.7
where ¢(x) is connected with the boson field (charged in the second case) and A*(x)
describes the electromagnetic field.
Let us consider only these terms of the S-matrix, which give a contribution to the
cross-section.
Ad 1

The set of the modified Feynman diagrams [2] for that interaction in the second
order of approximation has the form [3]:

Fig. 5. p = ky+ky,+ks— At
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Fig. 6. p = ky+k,—21—¢q

p

(3)

(4)

)

Fig. 8. No contribution to the cross-section

We have the matrix element of the second order as a sum of the parts connected with
all diagrams:

4
T,= YT (2.8)
The calculation shows the necessity of regularization for the terms 7%, 7% and

T {5 only.
After a regularization of singular integrals (Pauli and Villars):

1 1 1 r+2
- — 2.9)
T+ic t+ie T+M+ie

we separate the terms divergent with M — co and obtain for the quasilocal operators:
for the diagram (2):
1/ 0 0
A(ZZ)(xln Xz) = a(z)e [m— 4:(5;1) - a7g>i| X

x 6(xy —xz):tpl(x1)<p2(x2): In

(2.10
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in the CM system (E1+I?2 = 0), and with the A-vector chosen as i =0 in this system,

and for the diagram (3)

- ) 2 @ &
AP (xy, x;) = aPe|a a""é;;‘ +b a—x-(lj—z——m +

63 63 64 64
+c(__ . ——3) +d(6—xT‘ ; a-;ﬁ)u] B3, — %15, )p(x,):
1 2

03 0
Oxy 0x,

in the l—c'l = 0 system and with Z =0 in this system, where
M! 4()5(M)2
+ ——=];
m 2 \m
234 (M 1/ M\?
= —|—) c=—-z1—=};
2 \m 2\ m

1/ M M 81 /M
d=a(z); f='(;7)+z(';;:)'
Ad 2

We obtain the following Feynman diagrams:

—ln

M| 343
=—1 |

Fig. 9

Fig, 10

2.11)
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P1

k.
(2) ~~

P,
Fig. 11

The terms of 7, 7 and 7P are regular, so they do not need regularization. For
other terms:

(6)

Fig. 15
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U

o

Fig. 16

(8)

Fig. 17
we obtain after regularization:

M
A?)(xn X)) = 0(3)5(391"3‘2) In | — |:A%(x ) A, (x2)A"(x)A(x2):

A( )(xl Xp) = 0(4)5(3‘1-"2) In ﬂ(xz)

APNxy, x3) = a®8(x; ~x,) In

M » »
o i 1P(x)P(x ) P(x2)P(x2):

o? M M
AL(x,, x,) = a®8(x, —x,) [(a+ﬁ P nz) —\ +71n? ——\]:A"(xl)A,,(xz):
m m
62
AY (x1 x,) = aP8(x, —x;) [(6+na 02) In I +gln -—-‘] @) p(x,):.
where
m? i m?
= 3gm?—i— = —; = —j—
o m 3 B 3 Y i 5
. 2
i m
6 = 2; = — —; =] — .
m n 5 o= 5

The terms A and A$" are calculated in the CM systems P,, = 0 and with the
choice 1 = 0 in those systems. For both models of interaction, the regularization process
was performed in the momentum representation, and the results are rewritten to the
x-representation. It can be expected [2] that the calculated quasilocal terms are the same
as those defined by Bogolyubov, but a direct verification has not been so far performed.

The authors consider this work as a preliminary step to future developments.
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