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CYLINDRICAL SYMMETRY IN EINSTEIN’'S UNIFIED FIELD
THEORY. III

By A. H. Krorz anp G. K. RuUSSELL
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A cylindrically symmetric solution of Einstein’s unified field equations is derived for
the case when neither of the fields tentatively interpreted as electro- and magnetostatic
vanishes. The form of the solution suggests a new interpretation of the geometry which
will be proposed in a separate article.

1. Introduction

This is the third of the articles-in which we discuss static, cylindrically symmetric
solutions of the field equations arising in Einstein’s nonsymmetric unified field theory
(Ref. [1)). In the case of the symmetry considered, the difference between the so-called
strong and weak field equations is slight and can be conveniently ignored. Consequently,
we shall be concerned mainly with the former set of equations, namely,

grv:/l = guv,l_r:}.gav_Fngua =0, (18.)
R,=1T,,,— uov I’”F@+F”F'~’:0 (1b)
*g, , = 0. (lc)

Here g,, is the (nonsymmetric) fundamental tensor, I"M, the (likewise nonsymmetric)

affine connection, *g"’, the inverse tensor of g,,, *g“‘ == g*g", the associated tensor
density (g being the determinant of g,,) and *g%', its skew symmetric part.

We anticipated in a previous article (Ref. [2], paper 1I) a discussion of a static,
electromagnetic field, in which neither the electric vector E, nor the magnetic vector H
are zero. It was expected that this more general solution would lead to a formulation of
an analogue of Ohm’s law and a unified field theoretic description of steady currents.
It turns out, however, that the peculiar form of the only possible solution (as shown
below) suggests rather a radical interpretation of the theory with reference, in particular,

to what should be regarded as the electromagnetic field.

* Address: Depariment of Applied Mathematics, University of Sydney, Sydney NSW 2006,
Australia.
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We consider a cylindrically symmetric field (Ref. [2], paper I) with the fundamental
tensor
—a 0 0 0
0 —« E 0
guv = 0 _E __B ___H ? (2)
0 0 H vy

in which o B, y, E and H are functions of the radial distance from the axis of symmetry,
r, only. This corresponds to an electromagnetic field given by
E .

H. .
E=—ry, H=-0, 3)
r F

since, in the standard interpretation (Ref. {3]), g, is either taken as the electromagnetic
field, or bears a simple, algebraic relation to the latter. As usual, we assume that

g = —a@py—aH*+yE?") = —«?By(l+p—q) # 0, O
p = H*af, q = H?*py, anywhere in the space-time manifold.

2. The field equations

Using the form (2) of the fundamental tensor, we can easily verify that the equations
(ic) are identically satisfied. The components of the affine connection are determined
from the equations (1a) and for the sake of the subsequent solution, we find it convenient
to express the latter as follows. Let us define the functions U, V, 4, B, J, K and L (of r), by

" Ed' E*- EH H?> E? ‘ H
of Ea E—of —-—H’—E( “ﬂ) 2

; +
2E 20 2ap 2By

— = — 4+ = jJU-—V =0, 5
By aff  E? E (52)

H , EH , 1 HY H*> E?
- — 9y ——E+ {1+ -—|H-H{— ——}U=9V =0, (5b)

2y 20 2 By By af
a=w- E_H 5¢)
== — e e C
2E  2H (
PR (54)
B 2H’
F + v + E (1+ )H, (p—q+ 1)U (5¢)
P _ —_—— — — — s <
28 "2 TPaE Dog P74 "
k=232 F _a B _ v (5f)
T T g PPoE 9o TWTITUS
L = ﬁ —U, (5g)

2_.
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where dashes denote differentiation with respect to r. Eliminating ¥ from the first two of
these equations we find that the co-factor of U becomes

g g
—_—— 2+ —— 1,
o’H ( 1"6?)

and this is nonzero under the well-known conditions of Hlavaty (g(g—2) # 0, where
g = g/det (g,w) and v denotes as usual the symmetric part of the fundamental tensor,

for the fields of the second class, Ref. [3], p. XV). It follows that our functions are well
determined. We may observe also that

K—qJ
ST yLvu =, ©)
p—q+1
and
H
V=-"u-L-u). %

With these definitions we can express the non-vanishing components of the affine connec-
tion as

ry,=@E-1YA-(p+q-1)B+K-L,
Iy, =(p+1)A—(p—q+1)B—K+L,

F;3=€La
o

~2

Ti =~ {pA—(p—q+DB+J-L},

K

EH
— A,
afs

I, = —A—(q—1)B+K-L

1 E 1 1 H .
oy = (K=D), Ina = I3 =~ (=J+0),

2 E EH
F13=“—(K_L—U)a rm—* - —(A‘“B),
v o aff
E s . H
rlZ_' —E(A_B)9 FE& == U'f r14_ EB7
" EH 1 H
rt,=——B, Iiy=-—-(J-L-U),
= By v t

'ty = pA-(p+1)B+J—L.
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With the help of these expressions we can now work out the components of the
Ricci tensor R, and hence write down the field equations to be solved. After some straight-

forward manipulation the latter (the strong field equations) become
A +A[-Q2p—29+3)B+J—-2K—~L+U}+B[2Ap—g+1)B-2J+2K] =0
B +B[-2(1+p) A+(@2p+29+1)B~-J—-L+U] =0,

2 2
Pd_ gy 2P

J+J[-3B+J+L+3U]—
L ] p—q+1 p—q+1

K(J—-K) =0,

2q
p—q+1

2pq

K +K[-2(A-2B)-3B+J+L+3U]}— +1(J—K)Z—

JJ—-K) =0,
2pq

L+L[-B+J—-L+U}-
p—q+1

(J - K+ {[2K(L+U)— 2 JJ-K)],
p—q+1

2
or [2J(L+ vy— —F K(J—K)]} — 0,
p—qg+1
and-
U+U(—B+J—L+U) =0,
together with (6) and the easily verified relation

p(A—B)+(4~B)B—¢B? = 0, B # 0.

3. Integration of the field equations

We find immediately from (6), (8b) and (8f) that

B:=X?iﬁ_f{*ﬁ
EH \/p—q+1’

€3
U = e .
Jﬁpr—q+1

and, by subtracting (8a) and (8b), that

aff €1

A-B= L __ 4
EH /gy\Vp—q+1

¢y, ¢, and c¢; are arbitrary, nonzero constants (since when 4 = B we have B = 0).

equations for J, K and L can be simplified by the substitutions

J=L+M K=L+N,Z="T5, W= ~B+M+U,
and
X=((p-1)A-B)—(q+1)B+M+N+U.

(8a)
(8b)

(8¢)

(8d)

(8e)

(8)

®

(10

(1

(12)

The

(13)



We then get two more first integrals in the form

2¢,
Z+W = ==,
VByVp—gq+1
X = 25
VBV p—q+1
¢, and ¢s being two more constants of integration.
Let now
Cg = C5+C4_C3, Cy = C5—C4,
and
1
ﬂ_v \/p——q+1
Since
2 2
c, H ¢ E
p=2" L=
Ccy A Cy ¥

we now arrive at the complete set of first order equations:

o N EQ
— ={c¢cs+ec; 10,
20 g

c, oE H
7 H Q
=les—c, — 10,
2y © ?E
and
o E
—5 = —Cg—C3+Cy ——
Q2 6 3 1 H
Let further,
oo _2E e
¢, H’ cy

and define new constants, b and ¢, by

Ca Ca
bc =5, btec=-5(c;—¢)
1 i

(14)

(15)

(16)

amn

(18a)

(18b)

(18¢)

(18d)

(18¢)

(19)

(20)
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Equation
Rll = 0,
then gives
do _ o*(e—b)(g—0)
do  o(o+1) (beo+0?)

1)

o and g cannot be constant since then f = 0 which is meaningless. It follows that

bea+ 0% # 0.

There are two cases. Either
Cy
5(e3—¢y) =a=0,
1

or

be(a+b+c) = 0.

The first of these does not satisfy the field equations and the second leads to the conclusion
that

¢y = ¢y =0,
Accordingly we obtain two solutions, for which either

c1+c3 =0
or not.
The first of these is an exponential solution which is hard to interpret physically.
We reject it in the same way as the spurious solutions of paper L
In the second case, we put
C6+C3 = I, (22)
and deduce easily that
Q = (Ir+m)™!, 23)

m being a constant of integration.
Let us write

R=1Ir+mandc; = AL
Then with the help of (23) the final solution becomes

o = R2AG— o)

B = R“—m%R“““)+miR2(“”1),

y = RX(1-4,
E = WI3 RZA,
and
H = m,R*, 2%

where m; and m, are constants of integration.
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4. Discussion

It may well be thought that the solution (24) of the field equations is no more reason-
able than the exponential solutions rejected both here and in I. The most likely value we
can choose for 4 is unity when both « and y = 1. Unfortunately E and H are then propor-
tional to R2. The corresponding electric and magnetic field intensities are hard to visualize.
The problem is similar to that encountered in the special solution of Papapetrou (Ref. [4)]
where we have to envisage charge densities of a distribution depending on the radial
coordinate. In view of (3) it would be best if we could lower the exponents of E and H by 2,
or in other words, if we could change the interpretation of geometry in such a way that
these quantities had to be differentiated twice before their identification with physical
objects.

Now there is no compelling reason why we should regard guv (or a combination
of its components found by Hlavaty) as the electromagnetic field at all. It is true that we
seek a geometrization of the latter and that, because of the skewsymmetry of the field
we want to geometrize (that is to relate it by algebraic and analytical processes to the
fundamental tensor and to the affine connection which define the geometry), we
presume it to be expressed in terms of guw. However, any tensor function of the
skew symmetric part of the fundamental tensor (in which the symmetric part may
be likewise involved) which does not destroy symmetric properties and preserves transposi-
tion invariance (Ref. [1]) is a priori acceptable. What that function should be, must be
dictated by reasons of expediency since, as Einstein put it, all that we can expect from
a unified field theory of the kind considered is that a Maxwell field should somehow
appear related to the geometrical structure proposed.

In view of what we want to do to the functions E and H found in the preceding section,
we further expect the above relation to be a second order differential one. An explicit
proposal for a radical re-interpretation of Einstein’s theory will be made in a separate
publication since it will be found that it applies to a more general symmetry than the
cylindrical case considered herein.
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