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An amplified Dirac equation has been approximately reduced to the subspace of
positive energy states following the “elimination” and “transformation” methods general-
ized to this case, successively. Their mutual equivalence has been verified by explicit calcu-
lations accomplished to the third order of approximation.

1. Introduction

Some general problems related to the amplified Dirac equation (including higher-
-order tensor terms combined in a Lorentz- and gauge-invariant way) have been investi-
gated in our previous paper (Hanus, Mrugala [1]) where the importance of passing over
to the Hamiltonian formulation of this equation has been stressed in connection with its
quantum-mechanical applications. A particular form of the amplified equation describing
radiative corrections (see Bethe and Salpeter [2], p. 136) has been discussed in more
detail. Possible methods of its subsequent reduction to the subspace of positive energy
states have also been shortly outlined. Explicit calculations dealing with generalizations
of the two (“elimination” and ‘‘transformation’) methods well established and widely
used for the Dirac equation will be displayed, successively, in this paper to terms of the
third order in the fine structure constant « = e2/hic = 1/137. This accuracy, of one order
higher than that usually required for the approximate treatment of the Dirac equation,
seems to be indispensable in our case, as radiative corrections (although in a simplified,
phenomenological way) are to be taken into account. According to [l] we start from
the equation
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(where j and o denote the current and charge density related to the external, stationary
electromagnetic field E = —grad 4,, B = rot 4, the remaing symbols having their
standard meaning)®.

Numerical values of the dimensionless constants g, and g, are of the order of unity
for heavy fermions, but — in accordance with the known result of quantum electrodyna-
mics — of the order of a = 1/137 for the electrons. Adapting our further calculations
mainly to the latter alternative we take into account this order of magnitude of g, and g,
in all our estimations.

2. The elimination method

Similarly as in the case of the Dirac equation; the method consists in the elementary
procedure of eliminating the small bi-spinor components?, but supplemented by a non-
-unpitary transformation removing non-Hermitian terms from the so obtained “formal
Hamiltonian™, in accordance with the idea of Akhieser and Berestetskil ([4], p .125).
Hence, applying to (1) the unitary transformation

i
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(introducing the distinction between the large and the small bi-spinor components denoted
by ¢ and j, respectively) and introducing the standard representation of the Dirac operators
we obtain the set of equations for ¢ and y (¢ now standing for the Pauli spin operator)
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We begin with the well known procedure of the step by step elimination of y by means
of (4), in order to obtain from (3) the respective approximate equation for ¢. For g,

! see formula (7) of [11. All symbols used in our present paper are the same as those defined there
(with the exception only that we put now H, vy instead of H’, 3’ used in [1]). The order of magnitude of
particular terms will be estimated — similarly as in [1]— in terms of powers of ¢~!. A more detailed list
of references may also be found in [1].

2 such calculations for the amplified Dirac cquation may be found in the paper of Petiau [3].
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g, ~ 1/137 we obtain
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The first-order approximation (formulae (6)-(8)) gives thus the well known Pauli equation,
while (12)~(14) represent the second-order corrections of Sommerfeld, Thomas-Frenkel
and Darwin, respectively. H,' is anti-Hermitian, but it can be transformed away by means
of the Akhieser-Berestetskii transformation
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Simple calculations give
HP = 0PH*(O0) ™' = H°+(1+g,)H,+H}. (17)

The result differs from that for the Dirac equation merely by the additive contribution,
proportional to g,, to the Pauli term H;,, Extending this iterative procedure to the third
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order of approximation we obtain after elementary, although somewhat lengthy calcu-

lations
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The anti-hermitian term H, + H,  disappears after transforming H® by
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Hence we obtain finally3
HY = @9HY(OP) ™" = Ho+(1+g)H,+

+H+(1+2g)H; +(1+2gH; +H,. (23)

3. The transformation method

The well known “FW-method” of Foldy and Wouthuysen [5] supplemented by
the condition of Eriksen [6] may be shortly denoted as the “transformation method”.
The proof of its equivalence with the previously discussed ‘elimination method” has
been given by de Vries and Jonker ({7], [8], [91, {101]). Their result implies the analogical
question for the amplified Dirac equation. Leaving aside the problem of the strict equiv-
alence we shall verify by explicit calculations given in this chapter that — to the third
order of approximation — the reduced Hamiltonian (23) is identical with that resulting
from the Hamiltonian (1) transformed to the “‘even” form (separating positive and negative

* some additional terms would be present in the more general case of quasi-stationary fields.
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energy states). It must be stressed that our procedure is a modification, rather than a simple
generalization of the FW-method in its original version®. Instead of that we start from
the transformation of Case [12] which brings to the strictly “even” form the operator
of the kinetic energy of the Dirac Hamiltonian. The advantage of applying this trans-
formation (introduced by Case, himself only for 4 # 0, 4, = 0) when both, magnetic
and electric fields are present, has been discussed by Garszczynski and Hanus [13]. Besides
some new aspects of the physical interpretation, a considerable simplification of calculations
has been achieved in this way, leading through an “intermediary’ representation of the
Dirac equation. Hence, we follow a similar path for the amplified Dirac equation. The
unitary operator of Case reads

is 1 z e
U=¢e", Szggzarctgn—u-‘, z=0" p—EA. (24)

After simple calculations it can also be written down in the form
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Transforming the Hamiltonian (1) by means of U, expanding all expressions in power
series of the small parameter z/mc and neglecting terms of the order higher than the third,
we obtain, after somewhat tedious calculations
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4 Calculations closely following the latter method have been given by Barker and Chraplyvy [11],
to terms of the ordet ¢—2,
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The terms ¢, K, +0,K, are “odd”. Following the general idea of the iterative FW-method,
it is not difficult to guess the explicit form of an additional unitary transformation causing
the disappearance of these two terms. It sufficies to put

. 1
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in order to obtain the final form of the Hamiltonian (1) transfomed to the “even’ form
in the required, third order of approximation. We have, namely

H = WHW = Ko+ 05K, (34)

The, somewhat controversial, problem of uniqueness of W does not matter in this approxi-
mation, R containing only sufficiently high powers of ¢~ !. For the same reason it is allowed
to treat W as one unitary transformation or, alternatively, as the product of such trans-
formations, with particular terms of R in the exponent. This possibility results immediately
from the Hausdorff’s formula.

The reduction of H*"" to the subspace of positive energy states is trivial and consists
in putting ¢; = + 1. The reduced Hamiltonian is identical with that given by (23), except
for the absence of the term mc? in the latter (in consequence of the, previously applied
to it, transformation (2), changing the normalization of energy).

4. Conclusions

Calculations given in Chapters 2 and 3 have verified the — at least approximate —
equivalence between the “elimination method” (of Pauli-Akhieser-Berestetskii) immediately
generalized to the amplified Dirac equation (1) and the procedure, proposed by us, of
applying the Case’s transformation followed by a supplementary transformation, in order
to obtain from (1) the “even” Hamiltonian in the same order of approximation. The
latter procedure is a modification of that resulting from the original ‘“‘transformation
method” (of Foldy-Wouthuysen-Eriksen). The characteristic feature of the Case’s trans-
formation U is that the Hamiltonian (1) transformed to this “intermediary representation”
contains all terms of the final “‘even” Hamiltonian so that the only role of the supplementary
transformation W is to transform away the superfluous “odd” terms (of the order ¢!
and higher), without spoiling the correct form of the “even” part. The simplification of
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calculations obtained in this way, as compared to those of the iterative FW-method
(becoming very cumbersome already in the second-order approximation) is obvious.

The problem of a strict equivalence (in the sense assumed in the quoted papers of de
Vries and Jonker) between various modifications of the transformation procedure as well,
as between a uniquely defined transformation and elimination methods, respectively,
remains open, as yet, for the amplified Dirac equation discussed in this paper. It seems,
however, that the achieved accuracy (to the terms of the third order, i.e. to those proportio-
nal to ¢=3, g,¢2 and g,¢ 2, successively) is sufficient for many practical applications of (23).
There are also possibilities of generalizations to the many-fermion problems.

It would be possible to adapt (23) to the case of heavy fermions, with g,, g, ~ 1,
however only in the approximation ¢~2, after changing the ordering of particular terms,
according to their order of magnitude. Another possibility — that of modifying all calcu-
lations, in order to include all terms of the order ¢=3 also in this case — seems to be rather
superfluous for practical reasons.
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