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ON THE NEW DIRAC EQUATIONS
By E. Karuscix

Institute of Nuclear Physics, Cracow*
( Received December 23, 1971)

A general class of wave equations is considered which as a special case contains the
new wave equations proposed by Dirac. It is shown that it is possible to introduce the
interaction with an external electromagnetic field if we choose different members of the
considered class. A particular case of such wave equations is treated in some detail.

1. Introduction

Recently, Dirac proposed a new relativistic wave equation which is not symmetrical
between positive and negative energies. This new equation strongly resembles the usual
Dirac equation but its physical consequences are very different. In the new scheme
the wave function transforms according to some infinite dimensional representation of the
Lorentz group and it gives only integral values for spin.

In connection with the new Dirac equation, many interesting problems arise. Among
them is the prime problem of introducing into the equation the interaction with other
fields, in particular with an external electromagnetic field. Dirac has shown that for the
new wave equation it is impossible to solve this problem in the usual way by replacing
the derivatives 8, in the equation by 0,—ied,. Therefore, if we wish to preserve this
manner we must change other elements of the considered theory.

In the present paper we show that the new Dirac equation may be obtained from
a general class of wave equations as a consequence of some particular assumption. Rejecting
this assumption we then get various examples of wave equations which also are not symme-
trical between positive and negative energies and for which the interaction with an electro-
magnetic field can be introduced in the usual way. One such example is discussed in
some detail at the end of this paper.

2. The general class of wave equations and their consistency

Let us consider vector-valued wave functions p(x) defined on the Minkowski space M*
and taking on values in some separable Hilbert space H. We shall assume that the wave
function y(x) is strongly continuous and has strong derivatives up to the second order.
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In addition, we shall assume that for each x, y(x) belongs to the domains of some number
of selfadjoint operators Q% and P, where the indices u and a run from 0 to 3 and from 1
to n, respectively. These assumptions must ensure the correctness of all performed opera-
tions.

The general class of wave equations which we shall discuss is of the form

(000, +Ply(x) =0, a=1,2,...n .1

Since the wave function satisfies more than one differential equation it is necessary for
them to satisfy some consistency condition. This consistency condition is obviously of
the form

[Q40,+ Pa @50, + Py]p(x) = 0 (2.2)

and leads to some second order differential equations for y(x). We make the assumption
that these equations are essentially the Klein-Gordon equation with mass m. Thus, we
assume that

[Q‘t‘lau—*'Pw ;av+Pb] = Aab(D+m2) (23)

where A, are elements of some non-singular numerical matrix 4 whose form has to be
determined. A simple calculation then shows that the operators Q4 and P, must satisfy
the following commutation relations:

[0 Q] +[Qa Q5] = 2274, (2.4)
[Q‘;s Pb]+[Pw ‘é] =0 (25)
[Pw Pb] = mZ ’ Aab . (26)

It is easy to show that this set of commutation relations has many inequivalent represen-
tations. Not all of them lead to physical theories satysfying the requirement of relativistic
invariance, providing conserved density current four vectors j*(x) with positive definite
density j°(x) and allowing the introduction of the interaction with other fields.

In order to establish the relativistic invariance of the theory let us assume that under
the Lorentz transformation

xt o x = AkxY 2.7

the wave function y(x) transforms according to some infinite dimensional linear represen-
tation T(A) of the Lorentz group. By standard considerations we then find that the
operators Q% and P, have to be replaced in the wave equations by new operators Q.
and P, satisfying the same commutation relations as Q% and P, do and related to them by

P/

a

Sap (MV(N)P,T(A) (2.8)
and

0 = Sap (M ATV(N)QT~(A) (2.9)

where S(A) and V(A) are two representations of the Lorentz group, the former being
finite dimensional and the latter infinite dimensional. In general V(A) is not connected
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with T(A), but for simplicity we shall assume that they coincide. Then the condition
that the primed operators satisfy the same commutation relations as the unprimed gives
us a relation between the matrices 4 and S in the form

4 = S(MAST(A) (2.10)
In addition, if we assume that the representation 7(A) is unitary the elements of the
matrix S(A) must be real.

At this point we wish to stress the difference in treating the requirement of relativistic
invariance in the above scheme and in the usual wave equations. In our case the operators
Q% and P, play the role of numerical constants in the usual wave equations but the
concrete representations of these operators may vary with the coordinate systems while
usually the numerical constants remain unchanged.

Performing now the usual manipulations with the wave equations we get many con-
served quantities. Among them we shall consider only those which are of the form

Ja(x) = (p(x), P, Q5p(x)) (2.11)
where the numerical coefficients @,, satisfy the condition
Q= —Qy, (2.12)

It is easy to check that as a consequence of the wave equations (2.1) and the commutation
relation (2.5) this generalized density current satisfies the conservation law

0uja(x) =0 (2.13)

but does not in general transform like a fourvector. In order to get a fourvector we have
to impose the condition

ST(AQS(A) = Q (2.14)
A further restriction on Q comes from the requirement that
jox)=0 (2.15)

Suppose now that we want to introduce into the wave equations the interaction with
an external electromagnetic field 4,(x) by the usual replacement

0, — 0,—ied (x). (2.16)

It is clear that we must first change the consistency equation (2.3). An obvious generali-
zation of (2.3) is then

[Q‘;(au - ieAu) + Pa’ Q;(av - ieAv) + Pb] =
= 4,{(0,—ieA,) (0" — ieA") + m? + QF .} (2.17)

where F,, is the tensor of the electromagnetic field and Q*" are some operators which are
skew in p and v. Performing then the corresponding commutations in addition to the
relations (2.4)-(2.6) we get the following equality

:—4—le ({Q’;’ Q;}+ - {Q;’ ‘;}—F)Fuv = AabQ”vFuv (2'18)



454

from which we infer that F,, may be different from zero only if

T O - {01 08 = g (2.19)

({}+ here denotes the anticommutator).

This condition is a restriction on the possible representations of the operators Q%
since if it is not satisfied in the given representation we cannot have there non-zero F,,.
It is certainly not satisfied if the matrix 4 has too many zero elements, as happens in the
Dirac case which we will describe in the next section.

The new operators Q"' play the role of operators of intrinsic magnetic and electric
moments. This fact shows that our wave equations describe (if any) particles with non-
trivial internal structure.

3. The Dirac new wave equations
The Dirac new wave equations follow from our general case if we make the assump-

tion- that only the operators P, are independent operators while

0; = bZl [ 3.1

where g%, are some real numbers. From the basic commutation relations we then get
the restrictions on the possible forms of matrices o* constituted from p4,. They are

2
0"49" +0"4¢"" = — ¢4 (3.2)

0“ A+ 40" = 0. (3.3)
Substituting (3.3) into (3.2) we see that

v v 2 v
"o’ +o'e" = — - g (3.4

. 1 . .
from which we find that ¢* are equal to + —— y* where y* are the usual Dirac matrices.
m

The reality of p” restricts the possible representations of y* to those in which all non-zero
elements of y* are real. The condition (3.3) now becomes

YA+ 49" = 0. (3.5)
Introducing the matrix B by
7" = By*B~! (3.6)
we easily find that
4 = Ay°B~! 3.7
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with an arbitrary number 4. This result shows that the form of 4 is completely fixed up
to a similarity transformation. Simultaneously we see that the condition (2.19) is never
satisfied and consequently we cannot introduce the electromagnetic field into the equations
in the conventional way.

4. A different solution of the basic commutation relations

In this section we shall consider the solution of the basic commutation relations
augmented by an additional assumption that

[0% Q3] = g4, 4.1)

The first commutation relation (2.4) is then automatically satisfied. In order to satisfy
the remaining two relations (2.5) and (2.6) we put

Pa = bzl (l;)ang (42)
where (1), are constants and summation over u is understood. For the matrices 4,
constituted from (4,),, we obtain the following conditions

dd+A44T =0 “4.3)

grAAl = —m2. 4.4)

We shall treat these two conditions as conditions on the matrices 4, and not on the matrix 4.
It is then possible to choose the lowest dimensional matrix 4 which is in fact two
dimensional. Without loss of generality we may take

. 01
4 = '<—1 0) 4.5)
and we find that the matrices A, are of the form
I b,
. (c“, —a‘) (46)
with
aa’+b,c* = —m?, 4.7

In the present case the formalism is therefore not so restrictive as before and we still have
a large freedom in the choice of the parameters a,, b, and c,. In order to reduce this
arbitrariness we take the general expression for the density current four-vector (2.11)
and observe that for the positivity of j%(x) it is sufficient to assume that 4, are skew matrices.
Then the conditions (4.6) and (4.7) tell us that

01
Ay = b#(_l 0) (4.8)
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where
b,b" = m2. 4.9)

"

Therefore we may choose the coordinate system in such a way that b, = (+m,0, 0, 0).
If we then take the matrix Q as (15)~! we get

JO0) = (p(x), (@D +(2)?1w(x) (4.10)

which is obviously positive.
The wave equations in the above coordinate system are of the form

(010, £m0Y)p(x) = 0
(an,;imQ?)'P(«\’) = 0. “4.11)

In order to obtain explicit solutions of these equations we realize our Hilbert space as
a space of complex valued square integrable functions of four variables ¢" (u = 0, 1, 2, 3).
We realize the operators as

Q1)) = 9"y(9) 4.12)
and
J
Q5v) (@) = —ig"” Py w(q).
q

We may write the general solution of (4.11) as a Fourier integral

w(g, x) = [e (g, p)do(p). (4.13)

For the function y(g, p) we then obtain two equations

00 = = d
4¢P —p-atm5)9(g,p) =0
q
0 d g o\
p o° +pVytmg )w(q, p =0 (4.14)
The consistency of these equations requires that p? = m? and the normalized solution is

0 0 > >
wa, p) = 3\/ 2 exp {¢ P @i+atrairanr®? qo}. (4.15)
7N m 2m m

From this expression we see that for the upper signs in (4.11) the solution u(g, p) belongs
to our Hilbert space only for positive energies p°® > 0 while for the lower signs it does
so only for negative energies p® < 0. In this way we have either positive or negative energies
but not both. The theory is, however, symmetric with respect to the sign of energy since
both signs in (4.11) are admissible.
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Assuming that the representations of the operators Q) are invariant under the Lorentz
group, we get from {2.9) the representation of the infinitesimal generators of this group
in the form

™ = 010;-0;05. (4.16)
Using these operators we see that the solution (4.15) in the rest frame of the particle
is an eigenstate of the spin operators with the eigenvalue zero. The wave equations (4.11)

therefore describe particles of zero spin.
The density current four-vector is

"
p
m

Hx)y =+ (4.17)
as is expected for the free particles.

The mean values of the operators Q" turn out to be equal zero. This shows that our
wave equations describe particles which may polarize in the presence of an external
electromagnetic field.

5. Conclusion

We have shown that the above-described theory meets all the requirements for a physi-
cal theory. Nevertheless, it is only a special case of the general scheme developed in
Section 2. We may equally well assume different realizations of the operators P, in terms
of the opergtors Q%, for example the quadratic one where the operators P, are linear
combinations of the three scalar operators

Wl = gqu‘I‘Q‘].
and

In order to admit such a possibility we have only slightly to generalize the consistency
condition (2.3). This generalization consists in replacing the mass term by an operator
acting on the internal degrees of freedom. With an appropriate choice of coefficients we
may take this operator to be of the form

M? = oW +BW,. (5.2)
The eigenvalues of this operator are given by
my(ng—ny —n, —nzy—1) (5.3)

where m is some positive constant and n, are integers. However, this case also gives
negative eigenvalues for M2, In order to remove this defect we may take the P, as squares
of some linear combinations of the W, 1t is then possible to get the mass operators M?
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with eigenvalues n?m2 where n is an integer. The operators Q* and P, do not commute
with such M? and consequently the eigenstates of M? are not solutions of the wave equa-
tions. Instead, the solutions of the wave equations are infinite linear combinations of
eigenstates of M2, and each of these eigenstates is infinitely degenerate. The wave function
therefore describes a state with a finite probability of finding each eigenvalue of the mass
spectrum. We believe that in such a case the wave function y(x) may be interpreted as
a state of some physical field describing a collection of an arbitrary number of particles.
A detailed discussion of this will be presented in a separate paper.
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