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SOME EXAMPLES OF QUANTUM MARKOVIAN PROCESSES
By W. GARCZYNSKI AND J. PEISERT
Institute of Theoretical Physics, University of Wroclaw*
( Received Novemper 19, 1971)

Several concrete examples of quantum Markovian processes are considered in derail.
The diffusional character of the transition amplitudes found with the use of the Feynman
path integral is demonstrated. Two cases of processes with boundaries (absorbing or reflecting)
are discussed. Finally, the quantum analogue of the Poisson as well as the Ornstein-Uhlen-
beck processes are described.

1. Introduction

In the present paper we collet in a systematical way some simple examples of so-called
quantum stochastic processes described in terms of their transition probability amplitudes.
In most of the cases considered below we deal with the densities of transition probability
amplitudes. Namely, we deal with complex functions (s, y; 1, x) each of them giving the
density of the probability amplitude for finding a particle at time ¢ at the state x when
it is known that at an earlier time s it was at y. The parameters x, y, z... vary within the
space of states Z relevant to each concrete physical situation. These functions, called
for the sake of brevity the densities of transition amplitudes, should satisfy the following
postulates (¢f. [1]):

@ Gy x) = x5 0)*
motion reversibility condition,
@) lm(s, y;1,x)=6y—x)

tis
time continuity condition,

@iy fdz(s, yi T 2)(s, x5 1, 2)* = 8(y—x)
p.
unitarity condition,
() fdz(s, 51,20z, z; 6, %) = (5, y;6,x) s<T<t
&

quantum causality condition,

(V) (s y;4x)
continuous functions in y, x, space continuity condition.
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Any function (s, y; t, x) satisfying the conditions (i~v) is called a quantum Markovian
process in the space of states . The adjective Markovian is justified by the fourth condi-
tion, the Smoluchowski—-Chapman—Kolmogorov equation (SCH-equation).

The quantum Matkovian processes most interesting from the point of view of physical
applications are the quantum diffusional processes, which are characterized besides the
postulates (i~v) by the existence of the following limits [5], [6]:

A, dim (1=9)7" fdx(s, y3 t, %) (o= ) = ails, y),

tis

B. lim (I—S)-lyj dx(s, y; t, x) (g = i) (xj—yj) = by(s, y),

tys

C. lim(t—s)"'[ [dx(s, y; 1, x)—1] = c(s, y),

tys ks
D.  lim (—s)7" fdx(s, y5t, %) (x; =y )" (2= y2)"*(x3—y3)" = 0
tis z

if ny+n,+n3=3; k,j=1,2,3.

Here, the space of states & is chosen to be a part (or the whole) of the three dimensional
Euclidean space #3. The functions a,, b;; and c¢ are called the coefficient functions
of quantum diffusion.

1t may be shown (¢f. e.g. [1]) that the densities of transition amplitudes for quantum
diffusional procesess satisfy the Kolmogorov-Schrédinger equations

- 6s(s9 }’7 ta x) = [%‘ bkj(sa y)akaj+ak(sy y)ak+C(S, y)](s5 Y t: x)’ (1'1)
35, y; 1, x) = [%0:0,6,,(t, X)— Balt, X)+c(t, X)X(s, y5 1, x) . (1.2)

These equations, supplemented by the initial contition (ii), provide a method for finding
the densities of transition amplitudes if the coefficient functions &, b;; and ¢ are given.
This is clearly not an easy task and the exact solutions to these equations are known for
a very limited number of cases [7]. Since we are interested in examples of processes for
which the densities of transition amplitudes are given in the closed form, we shall focus
our attention on results obtained with the use of the heuristic Feynman path integral
representing solutios of the simple Schrodinger equation [8].

As is know, in the case of systems described by Lagrangians which are quadratic
in coordinates and velocities, the ““integration” may be crried out to obtain the propagators

K(b, a) = f Rl Px(t) = F(1,, 1,) exp {]il S.[b, a]} . (1.3)

Here, S, [b, a] stands for the action integral calculated with the use of the classical trajectory
connecting the points x,4(2,) = x,and x.(t,) = x,. The function F(z,, ¢,) may be determined
from the postulates (i-v) up to a phase factor which was guessed in the several examples
of transition amplitudes given by Feynman and Hibbs [9]. We shall discuss them in detail
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in the next section. In particular, we found it useful at the present stage of development
of the quantum stochastic processes theory to check successively all of the conditions
(i-v) and especially (A-D). Thus, we shall stress the diffusional character of processes.
described by the densities of transition amplitudes found by Feynman (examples b-{).
Examples a, g, h and i are given by the authors.

2. Examples of quantum Markovian processes

We begin with the remark that the notion of quantum Markovian process is not
vet fully defined by the postulates (i—v) and the conditions (A-D). This is suggested by
the existence of the following, rather special, example:

(5,58, x) = d[x—y—uv(t—s)], (2.1

where x,y EZ = #' and v=0
This function describes a classical particle moving along a real iine with constant velocity v.
The postulates (i—iv) are satisfied, whereas the space continuity condition (v) is not. Again
the conditions (A-D) are satisfied and

a(s, y) = v
b(s, ¥) = ¢(s,y) = 0. 2.2)

Clearly, this function has a classical sense as the density of a probability distribution
instead of that of a probability amplitude, as it should be in the quantum case. We believe
that the condition of a nonvanishing coefficient b would suffice to eliminate such functions
permitting a classical interpretation of the quantum diffusional processes.

As the first example of a quantum Markovian process we shall consider an analogue
of the classical Poisson process.
2a. Quantum Poisson process

The density of the probability amplitude is given by the formula [3]
iz
v, x)=(0,p;t,x) = T (——) .(y, x)e'*, (2.3)

where 4 is a real number,
Ho(y—x) = o(y—x), 24
My, x) = Jdzq(y, 2M1,_1(z,x) n >0 (2.5)
and the function ¢(y, z), continuous in both variables, satisfies the condition

g*(y, x) = g(x, ») (2.6)

and is such that the series Is absolutely convergent.
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It is quite easy to check all the postulates (i-v) if one notices that

jdznm(ya Z)H,,(Z, ,\') = Hm+n(y’ x)- (27)
x
Thus, (¢; y, x) describes a stationary quantum Markovian process in the space of states Z.

2b. Free quantum Brownian motion on a line

The first non-trivial example of a stationary quantum Markovian process of the
diffusional type is given by the formula which is well-known jn quantum mechanics,

m\ [m )
ty,x)=(0,y;1,x) = (m) exp i [27”06—}’) ] (2.8)

where x, y € & = &', m is the particle mass, and # is the Planck constant devided by 2x.
Such a function is associated with a free particle of mass m undergoing quantum
diffusion on a real line.
It is rather obvious that the postulates (i) and (v) are satisfied. Taking into account
that the moments of the process are

0 for n odd

2 for n even

Clt, ) = ] dx(t; y,2) (x =3 = A (29)
- (-1 (-)

we have for a test function f

] o0

(n)
tim [ st 00 = > =i e = o0
t40 n! 0
-0 n=0
Thus, the second postulate is also satisfied.
Using the Fresnel integral
in\*
j dx exp (iyx?) = (—> y >0 (2.11)
b4
we may easily find that (iii) is also fulfilled,
§ da(t; y, %) (15 x, 2)" = exp [i(y> —x")]o(x—y) = d(x—) (2.12)

where y = 21ht
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The quantum causality condition (iv) is satisfied, as may be verified with a little
patience [10].
It follows from formula (2.9) that the conditions (A-D) are satisfied and we have

.,
a(y) = tim S0P g
110 t
C,(1, h
b(y) = fim 2289
ty 0 t m

o1
e(y) = lim — [Co(t, y)—1] = 0,
ti0 ¢t

1
lim " C(t,y) =0 for n>=3. (2.13)

t40

Hence, the process is diffusional and in such a case one has the following differential
equations for the transition amplitude:

2

h
ihd(t; y, x) = — 2—m—5i(f: ¥, X),

h?
ihéft; y, x) = — . a5y, x). (2.19)

The same equations hold for wave functions defined generally as

@(s, y) = fdx(s, y; 1, x)u(t, x)
2
w(t, x) = [dyuls, y)s, y; t, x) (2.15)
Z
where v(t, x) is a final wave function, while u(s, ¥) is an initial one.

2¢. Quantum Brownian motion in one dimension influenced by a constant
force

The amplitude for such a proces is given by

m \* i Tm(x—»? fix+y) [
; + L . 2.
(33, %) <2niht> xp h [ 2t 2 24m:| (2.16)

X,y EZ =R, and f is the magnitude of the force directed along the real line. The
physical interpretation of this function may be easily seen from its Kolmogorov-Schro-
dinger equations, written below.

All the postulates (i—v) are satisfied in this case, as may be easily verified. It should
be mentioned that the verification of the conditions {A~D) is simplified to a large extent



464

by the fact that only asymptotic estimations of moments at small ¢ are needed instead
of their values at any time.
Let us introduce the convenient abbreviations

_ m
T 2ht’
tf
ﬁ—ﬁl,
m \* i r*f?
= - - -], 2.17
' <2niht> exP( h 24m) @-17)

With this notation we have for the moments

[ im\! V.
Co(t, y) = f dx(t; x, y) = v(;) exr><—l4—a +2tyﬁ>,

w0
n

Cit, y) = J dx(t; x, y){(x—y) = —

— 0

B
by Co(t. y),

1 4dY
C2n(ts Y) = ( *) CO(ta Y),

i da
1 dY
Consi(t, ) = (lT 6@) C.(, y). (2.18)

Using the asymptotic expansion of Cy(z, ), which is

Co(t,y) = 1+i %ft+0(t) (2.19)

we may easily estimate all the moments and calculate the coefficients a, b, c. The results
are as follows:

a(y) =0

h

b(y) = i’r;
o(y) = —’:—Z (2.20)

Hence, the process is a diffusional one and its Kolmogorov-Schrodinger equations
(1.1) and (1.2) may be immediately wriiten with the use of the above coefficients.
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2d. Quantum diffusion on a line influenced by the Hooke force

This process, usually called the quantum oscillator, is described by the following
transition amplitude:

(t; vy, x) = _ Mo *ex ﬂ[(x2+ %) cos wt—2xy] 2.21
Vs 2nih sin wt P 2t sin wrt Y vl D

k
where x, y EZ = R, w? = —, k being the elasticity coefficient and m the mass of the
m

particle undergoing oscillations.
The postulates (i—v) are satisfied here, which may be proved by performing some
elementary calculations.
Let us use the following convenient abbreviations, which have nothing in common
with those used previously,
mw

o0 = —— cot wt
2h

mw cos wt—1

f=— —

2h  sin ot

mw 1

= -— . 2.22
v 2h  misin wt ( )

We find quite easily the following results by using the Fresnel integral,

imy\* _ B mw?y*
Co(t, y) = (?> exp zy2 <2ﬁ— ;) =1+ ik t+0(o),
B
Ci{t,y) = —vy _oc Cot. y) = O(tz)

1 dy
CZn(I’ y) = T ;& Cl(t9 y)’

1 4\
C2n+ l(r7 _V) = <_ _> Cl(l’ .}) (223)
i do

and, therefore, the quantum diffusion coefficients are
a(y) =0
h

b(y) =i —
m

ma®y?

M 2.2
2ih (2.24)

oy) =
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The condition D is satisfied here and, hence, the process is a diffusional quantum
Markovian process. It plays an outstanding role in quantum mechanics.

2¢. Quantum diffusion on a line influenced by the Hooke force and an
external force f depending on time

In this case x, ¥y € & = 2! and the process is not stationary

mw

+ i mo
) exp — —————— [(x2+y2) cos ot —5)—

2rih sin w(t—s) h 2 sin o(t—s)

1 1

~2xy+ Ead J‘ dof(c) sin w{o—s)+ —2—» Jdaf(a) sin w(t—0)—
mw

5 $

(S’y;t’x)_":(

t a

~22——2 jd(f Jﬁ do'f(6)f(c") sin w(t — o) sin w(c’ —-S)} . (2.25)
)

s S

We shall use here the following abbreviations:

mw i
7= \Orit sin w(t—s))’

A =29 ot w(t—s)
—2hcoa) 5),

_ mw cos w(t—s)—1
T2 sinw(t—>s)

t

! j dof(o) sin w(o—s),

T hs sin w(t—s)

t

! Jdof(a) sin (! — o),

"~ hsin w(t—s)
S
¥ g

JQ dao Jda’f(a)f(a’) sin w(t — o) sin w(e’ —s). (2.26)

s s

—1
~ hmew sin w(t—s)
All the postulates (i—v) may be checked here, although this is a somewhat tedious
task in this case. The following elementary identity simplifies the algebra involved:
sin (o; —,) sin (a3 —ay)+sin (o, —a3) sin {a, —az)+
+sin (e, —ay)sin (o, —o3) =0 (2.27)

for all ay, a,, 23, o4,
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The conditions (A-D} may be verified simply if one notices that the zero moment
has an asymptotic expansion,

o

in \*
Cos, t; y) = f dx(s, y;t, x) = (I) Y exp i{Ay2+by+c— (2.28)

-

a 2
[(A—B)y— 5] Lt ma?y?
— ———‘—;1————- =14+ l—h[ 5 "'.f(s)yJ +0(t—S),

and also that

a
Cra [(a-Byy-?
Cis, ;59 = —|— = —=1Co(s5, t;9) = | —————— —=y| Co(5, t; ¥). 2
(515 9) = ~ < = db) ol £ ) l - ¥ Cols, 59). (2.29)
Higher-order moments may be expressed as derivatives of C, (even order moments) and C,

(odd order) with respect to the parameter 4 and are easily estimable. The condition D
is satisfied, and we have for the quantum diffusion coefficients the expressions

as,y) =0
h
b(s,y) =i—
m
1 mcozy2
o5, ) = o —fs)y |- (2.30)
in 2
Therefore, the Kolmogorov-Schrédinger equations in this case are
h? me’y?
(s, y3 %) = | = o B+ Tl () | (5, v 1, ), @31)
2m 2
) B: ,  mo’x?
iho(s, y; 1, x) = — 5 Ot =5 =) (s, y5 8, x). (2.32)
m

2f. Quantum Brownian motion in the three dimensional Euclidean space
under the presence of a constant magnetic field

If we choose a coordinate system such that the third axis is parallel to a magnetic
field B = Be,, then the density of transition amplitude reads

m \"* ot im j(xs—y3)2
t59,%) =7 ] ——expi 0T
(. %) <2m'ht> ot P 2 | ¢ *
2
w wt
+ E‘COt 2—[(xn_J’1)2+(x2_}’2)2]+0)(Y1x2—x1}’2)} (2.33)
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e .
where x,y € & = #3 and w = —, e and m are the particles charge and mass, and ¢
me

is the velocity of light.

Postulates (i—v) are again satisfied here. One should notice that the amplitude has
the property

(13X = (15005 = (5%, ¥, (2.34)
which shows the difference between the time-reversal operation and that prescribed by
the first postulate.

This is an agreement with the well-known rule which states that a time-reversal
operation should be followed by a change, in the direction of the magnetic field (more
generally, by a change of sign of frequency w).

If one introduces the notation

3/'.,
m ot
oqA = T e —
2riht . ot
2

Sin —
2
ﬂ mw twl
= — cot — ,
4h 2
. m
"= D
maow (2 35)
T=%h '

the moments are then expressed by the formulae

C’pqr(t’}") = j dx(t;y, ) (x; —y )P (X2 = 12) (x5 y3) = O‘C;C‘II’CW (2.36)
o 3

r A
where

o
n

iod\

2 dn

14
C,= J dzz"exp i(fz —ny,z) = (;- —) Cos

A
w3
1
g8

c' = J dzz"exp (iy

s idy
dzz" exp i(Bz*+ny,2) = — — ~ ) €6

Yy dn

d\
-2y (_1 _) Cg/,
dy
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and for zero moments

cy = (%) . (2.37)

Now all quantum diffusional coefficients may be found and are
.1 .
ay(y) = lim - | dx(t; y, x) (¥, —y1) = 7 @,
t1 0
4 P
a(y) = — 7 oy,
as(y) =0
. h
bii(y) = ‘;; Orj

ICUZ

n 2, .2
m i+ (2.38)

oy) =

Therefore, in this case we have the following Kolmogorov-Schrodinger equations:

. 12 ihew
iho(t; y, x) = | — m Ay+ —— (¥20,—y,10)+
m 2
mw? P
+ vg——(yl+yz) (; y, x), (2.39)
2 ihw
lhat(ta ) X) =1 - Ax_' A (x261—x162)+
2m 2
mao? . 2
+ S (x1+x3) |y, ). (2.40)

2g. Free quantum Brownian motion on a positive half-line

This process is particularly interesting, for it describes the motion of a particle affected
by the presence of a boundary placed at the origin. The boundary may absorb or reflect
a particle. In the first case the process ends when the absorbing point x = 0 is reached.
In the second, the barrier reflects the probability flow and, therefore, it is doubled in
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the space of states & = [0, c0]. The density of transition amplitude is defined here by

the expression
G = () e [1 22 =y
; =|——) <expli— (y-—-
(53, x 2niht PliomV— |+

i 2 (y+x)? 2.4
+o exp 1.2—ht(y+x) , (2.41)

where the parameter « takes the values:
o = +1 for reflection at x =0
a = —1 for absorption at the origin.

It is not difficult to check each of the postulates (i—v} in this case in the same way
as for the case of free quantum Brownian motion on the whole line.
In order to estimate the moments we note that

+
where
_m
Y 271 s
A) = § dxte=9)" exp inx =) 243)
and

B(y) = { dx(x— y)" exp iy(x+ ).

The asymptotic expansions of these functions may be easily found, thus obtaining for
the lower moments the expansions

+ 2 iyy2
Colt) = 1+(1—2) (1) IRV o), 2.44)
in 2iyy
+ ty2
Cy(t) = (—”-) [— i 24 +0(v'2)], (2.45)
in iy

. %
i y 1 y  3ya o _3 2
Ct) = — + (L TR AT Al +0(y ") |exp ipy?,  (2.46
) 2y [(in) (2}’?2 2iy 20y 2iyv2) 4 )] Py, (249)

C5(t) = 0(y~"2) exp iyy?. .47)
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Using these expresions the quantum diffusion coefficients are found to be

b i o iy -

a = — —= lim \/y exp iy)?, )
™ T Y exp iyy (2.48)
2h [ 1 [y 3y _

b=— |-+ —=|= +a—])Ili iyy? |, .
m [2 N (2i * 2i>yin; Vyexp wy] (2.49)
2k 1-a -

= lim \/y exp iyy’. (2.50)

T m 20y NI
One notices that the coefficients will become reasonable if the limit

lim /7 exp iyy®

¥ -0
is assumed to be zero for y # 0. This may be understood as some sort of regularization
procedure consisting in a change of the mass m by adding a small imaginary part and
taking the limit ¢ | O at the end of calculations. Hence, in fact, we define the density of
transition amplitude as

(t; y, x) = lim (1; y, x),, (2.51)

el 0

where the limit is understood to have the sense as defined in the theory of distributions [11].
In this case we obtain the results for y > 0:

a=0,
h

b=i—, (2.52)
m

¢c=0.

2h. Free quantum Brownian motion within a finite interval

In this example, a particle moves freely inside the interval [0, x,], while at its ends
absorption or reflection may occur. The density of transition amplitude is in this case

0

3
(t;y,x) = (27::}!) Z [exp {i %t(x—y+2nxo)2} +

n=—ow

+ o exp {i 2% (x+y+2nx0)2}] . (2.53)
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In the case of absorption at the end we may obtain another formuia solving the
following boundary problem

ch,
at(t;y’ x) = l_ax(t;ys X),
2m

©;y, x) = 6(y—x),
:9,0) =t;y,x) =0 (2.54)

Using the Fourier method we get the solution
2 . (nmy\ . [nmx ih [ nm\?
&Gy, x) =~ sin{ — |sin{ — Jexp{— —[ —]) ¢t;,
T Xo Xo 2m Xo

n=—oom

x, y €(0, xo). (2.55)

The general case of motion with absorption at any two points may be obtained from
that just expounded simply by a shift of variables.

In conclusion, we wish to remark that it is possible to get other examples of quantum
stochastic processes from classical ones by taking the analytic continuation in time para-
meter to the purely imaginary values or by the analytic continuation in the parameters
of the process. However, the physical meaning of such processes does not always emerge
by itself. For instance, we may obtain a quantum counterpart of the Ornstein-Uhlenbeck
process [6] by chosing in a specific way the parameters of the process. Namely, if (¢; v, )
1s the transition amplitude for finding a particles with the velocity u at the time ¢, the
initial velocity having been v, it is given by the formula

. . _ Y * y (u—ve™")?
21, (t, v, u) = [m] €Xp {— E (T—?T‘)} s (256)

where we put

b=i—, 2.57)
m

and y is a real number.
The Kolmogorov-Schrodinger equations are in this case

b
o(t; v, u) = (y@,,u+ 5 6i>(t; v, u),

b 2
at(t; v, u) = _'yl’au+ 5 av (ta v, u)y

(0; v, u) = 5(v—u). (2.58)

This process describes the diffusion of a particle in the velocity-space which is damped
by a “friction force” represented by the term with 7.
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