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Using a suitable normalized coordinate system the Hamiltonian for N-free relativistic

N N

spinless particles may be written in the following form H = [( Z my)? +Z7z§ . A general-
a=1 a=1

ized Poincaré group is identified as a group of symmetry of the system. The relativistic

grand orbital momentum tensor I'; (i,j = 1,2, ..., 3¥N—3) is defined and its connection with

N
the many-body impact parameter — b has the following simple form I'? = #2[M*—( Z mg)?,
a=1

where M is the total invariant mass of the system, and I'* = %Z(I’; ;)? is Poincaré invariant.

The whole scheme is presented for a three particle system, but can be easily generalized
to N > 3.

1. Introduction

Non-relativistic collisions involving 3 or more particles are often described by means
of the so-called grand orbital momentum tensor which was introduced by Smith ([1], [2]).
Let us briefly recall the construction. One considers a system consisting of three freely
moving particles using six coordinates, three of them (&,, &,, &;) describing the relative
position of a chosen pair of particles, and three (&,, &5, &) the relative position of the
third particle and the centre of mass of the pair. Then we build the 6 x 6 grand orbital
momentum tensor I, whose components are I';; = &m;—&;x;, where n; are the relative
momenta canonically conjugate to &, (i = 1, 2, ..., 6). Clearly, the central three-body

6

collisions can be characterized by the condition I'? = 0, where I'> = 4 Y (I';))% Next
=1
6
one defines the three-body impact distance 52 = min [} ¢7] (an analogue of the two-

[ESN
-body impact parameter), which is uniquely determined by the kinetic energy of the system T
3 3
and the value I'2, namely [1] I'? = 2uTb? where p? = [[ m,/> m,. This is a simple generali-
a==1 x=1

zation of the relation /2 = 2u7h? for the two-particle system with / denoting the orbital
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momentum. For not too high energies this relation enables us to use only a few terms
of the partial wave expansion with respect to I

Of course we are actually interested in finding the fully relativistic description of the
asymptotic free-particle states. Several attempts to construct the relativistic theory of the
grand orbital momentum are known in literature (Ref. [3]-[6]). However, either some
relativistic features only were taken into account or methods used in the construction
were criticized as ambiguous. The aim- of this paper is to present a new more satisfactory
relativistic version of the grand orbital momentum. This paper deals with classical for-
malism. The quantum mechanical treatment will be the subject of another paper.

In the first place we give a construction of relative coordinates and momenta for 3
relativistic particles. Further, we introduce a symmetric, normalized coordinate system
which exhibits the symmetry of the Hamiltonian.

In Section 4 the symmetry is exploited and a generalized Poincaré group is identified
as a group of symmetry of the system. We construct generators and write their Poisson
bracket relations.

In the last Section we construct the relativistic grand orbital momentum and study
its properties. A connection between grand orbital momentum, invariant mass and impact
distance is established.

2. Relativistic relative variables

Let us start with the problem of construction of relative momenta. We shall use
a method similar to the non-relativistic procedure which leads to the relative momenta via
the Galilean transformation. Clearly, in our case the Galilean transformation will be
replaced by the Lorentz one.

First we concentrate on the particles 1 and 2 in their centre of momentum frame
(CM (12)). Their momenta referred to the chosen frame must satisfy the condition
Pi2+Pi, = 0. Now we difine P; = 3(pi,—p?,), which has the meaning of relative momen-
tum of particles 1 and 2 measured in CM(12). If we observe all three particles from the
overall CM(123) then the momenta fulfil the condition pl,;+p3,3+p3,3 = 0. The sub-
system (12) considered as a particle with the invariant mass m}, = (E'4+E?)2—(p!+p?)?
moves with the velocity

Pizs +P%23
E 23 +E123

Then the relations (given by a parallel Lorentz transformation [2]) between momenta

Pis, energy Ef,, o = 1,2 and quantities p%,;, Ef,3, « = 1,2 measured in CM(123) have
the following form

. « Pi2s+Pi2s [(Plas+P23) " Plas
Pi2 = P12zt —Efz3

My, myy+Eiy3+Efs
o _ 23+E123 ( (P123+Pi23) 'P‘izs) )
12 = ——— 123~ »
mi, E123+Ei23
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with o« = 1, 2. We define
P, = 3 [3(pi2s+p123)—Plas),
which may be considered as the relative momentum of the third particle and the subsystem
(12) measured in CM(123).
Let us assume that we observe three particles from an arbitrary inertial frame. Then
pl+p*+p® = P(= P;). The centre of momentum frame CM(123) has then the following
velocity

V="
E

where E = E'+ E?4E3 is the total energy of the system. Now, the relations between linear
momenta measured in CM(123) and in our inertial frame can be written in the form

a2 3 P-P.pa oL
Piaz=p+ —{* —E],

P e A @
M E

where « = 1,2,3 and M? = E*- P2

By inverting (1) and (2) we obtain, after a straightforward calculation, the relations
between the individual momenta p*, o« = 1, 2, 3, the relative momenta P, and P, and
the total momentum Pj:

pt = a*P;+b'P,+ P,

p* = a*Py,+b?P,—P,, ?3)
PP = a’P;— Py,
where
1 , 1 El,3—El;3+Ej,—El,
b =1-b" =11+ 3 2 i 27|
2 Ei>3+Ejs3t+E>+Eq;
. E Pp*
= -
M M(E+M)

Clearly b , a® should be considered as functions of Py, P,, P;.
Let us proceed to the relative positions. Having the transformation of momenta (3)
we would like to find a transformation law

X, = X, (x', x2, x3, p', p?, p?). “)

for the canonically conjugate positions. Let us assume that formulae (3) and (4) define
a canonical transformation. This assumption leads to the conclusion that

3 3
_ a(pﬂ)z 8
(X = Z Z 3P, (=), )
=1 B=1
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with « = 1,2, 3, k = 1, 2, 3. Strictly speaking we could add an arbitrary function
g(pt, p% p*) but this would lead to no benefit in further studies.

Then inserting (3) to (5) we obtain an explicit expression for the conjugate positions.
The position canonically conjugate to the total momentum has the following form

3
B L E Px(Px K~ JH) g
*" H H(H*-PH*(H+(H*-PHY’ )
where
3
H=Y E
a=1
3
P = le“,
3
J =Y x*xp%
a=1
3
K =Y (x*E*—p*1} ©)

E}
[
-

are ten generators of the Poincaré group [7] This position vector was studied by Pryce [8],

Newton and Wigner [9] and Fleming [10]. The last one called this vector — the centre

of spin position vector. The vectors X;, X, may be respectively considered as the relative

position of particles I and 2 in their CM and the relative position of subsystem (12) and

the third particle in CM(123). Because the X, X, referred to an arbitrary inertial frame

are given by very involved formulae, we only give the expressions referred to CM(123)
P,

X, = x'— X2+ P, (x' —x?) [—_——-—-—- -
’ z m(my,+Eq;)

4(”"%_’";)1312‘*‘”1121’1 - P, P :l
- 4 2 232 1]
Ey(mi;—(m{—m3))

X, = Q,—x%, t))

where E,, = El,;+E?,; and Q,, is the centre of spin position vector for the particles
1 and 2 referred to CM(123). It is worth while stressing at this point that in thecase P = 0
our procedure gives the same expressions for X, X, as those obtained by Barsella and
Fabri [i1].

After the canonical tramsformation given by (3) and (5) the Hamiltonian takes the
following form

H=+M?+P}
where

M = \/mfZJerz +NE+ P, my, = \/m§+Pf+\/m§+Pf. 9
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3. Normalized coordinate system and a symmetric form of the Hamiltonian

Let us recall that the key notion leading ta the concept of the non-relativistic grand
orbital momentum was a symmetric, normalized coordinate system [1]. Namely, instead
of the conventional non-relativistic (NR) relative variable (X )ng, (Png> ¢ = 1, 2, 3
Smith used

(&)s = dUXngs (m)s = d(Py)ng,
(&2)s = d(X)xr, (13)s = dY(Py)xrs
(&3)s = X3)nwrs (3)s = (Py)ng (10

3
where py; = mymy/(my+m,), pz = my(my+my)[y. my, d? = (us/py,)*. After the trans-

a=1

formation the Hamiltonian (the kinetic energy)

P, PR (P

H=-3 2u 2u
2( Z ma) 12 3

becomes conveniently symmetric, namely
2
(3)s

2y m,
a=1

H =

1
+ oy ((m)5+(m2)3)
u

where p? = py, ps.

In the relativistic case before we introduce the normalized coordinate system we
must make an additional transformation leading to relativistic reduced masses [12].
We introduce a momentum vector I7; which is collinear with P, and satisfies the following
condition

m;+m,

myy; = Jm2+P? +/mi+P? = mom, 117 . 1

\/mlm2

Thus the total invariant mass takes the form

m,+m
M=_172

\/m1m2+Hf+ - P; +\/m3+P§.

'\/m1m2 +m2

In the next step we define I7, which is collinear with P, and satisfies the equation
m

M= Mt Vmym, + 112
\/mlmz v ' \/msﬂs

Vmyu + I (12)

We see that the quantities \/ m;m, and \/ m,y have the meaning of relativistic reduced
masses [12].
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Let us write explicit formulae for the above described transformation

P, = AII)II,, P, = A,1,,1))[T,, P;=1II, (13)

where

2 2_ 242 2.2
4 = (ml,—mi—m3)’ —amim]
1= 4 2 H2 ’
Myails

= [0 o
= .

4AM2ITZ

Clearly m,,, M should be expressed in terms of II, II, (by means of (11) and (12)).

The last step leads us to a symmetric form of the Hamiltonian. In order to achieve
it we introduce momenta m;, ®,, which are collinear with Py, P, respectively, but they
have norms changed in the following way

m;+m S 3
71;% = (—L_:,.—::Z \/m1mz+II12 —ml-—mz) (M+ 2 my),
\/mlmz a=1
2 my o 2 2
ny = —“—\/’”3ﬂ3+nz —my | (M+ 3 m,). (14)
\/msﬂa a=1
The explicit formulae for these transformations are given by
II, = B(n;, ny)my, IT, = By(my, my)ms 15)
where
2 2 %
7'61 2
3 +mi+my\ —(m;+m,)
M(m,, n,)+ m,
B _ \/m1mz (my, m3) agl
! m;+m; i ’
2 2 +
7
2 3 +m3 -—m§
M(r,, )+ m
\/llsms (71: 72 a;1 ¢
B, = 2
ms 7y
with
3
M = \/(Z mg)’ +mi+m3 . (16)
a=1

The mapping
Pa—)"a=D;1Pa’P3_’”3=P3s (17)



519

where D, = A,B,, « = 1, 2 induces a transformation (X;, X,, X3) = (£,, &,, £3). It follows
from (5) and (17) that

/ P (. P, P,
éa = Da (Xa_ P_a(Xa E)) + 17, ((XIPI)Ra+(X2P2)Sa)’
&= Xs (18)
where o« = 1, 2 and
R. = mi,—(mi—m3)* My +my+m, + Ea
! mlz—ml—mz M ’

3
4m7, DM + 21 my)’
e

4 2 242
my{,—(mj—m3)
R2 = — 3 H
4m},DIMM+ Y m,)?

a=1

M2 —m?,+m? 3
Sy = 12 3 2 ((Esy+m3) (M + Y my)—2Mmy,),

AM*DXM+ Y m,)* =1
a=1

S2= 3

M?—m3,+m} (
AM*DY(M + 21 my)?
-

3 M4m,+m
(Egy+ms) M+ Y m)+2Mm,, —Lv,
a=1 3y M3

where

m
Egy = — 2 \/m3u3+H§(P1, P,).

\/mslls

Taking into account (12) and (14) one obtains the Hamiltonian in the symmetric
form

He= (3 mp+ 3 2. (19)
a=1 a=1

Before turning to the discussion of the above formula we should consider the meaning
of the new variables (given in (17) and (13)).

In the first place we should inquire into the problem of correspondence between our
relative (one should bear in mind that the following Poisson bracket relations are valid,
namely {&,, P} =0, o = 1, 2) variables &,, n,, « = 1, 2 and those (&,)s, (%,)s introduced
by Smith. It can be checked that in the limit m, - 00, a2 = 1, 2, 3 we get

& =X 7 — C1_1(P1)NR,

& =X, mm - C;I(PZ)NR,
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3 3
where ¢; = (uu/Z ma)%’ € = (ﬂa/z ma)% and &3 = (X3)ng, 73 — (P3)ng- Comparing these
a=1 a=1

asymptotic formulae with (10) one finds full correspondence (except for the common

factor (u/\i my)?).
a=1

The transformation (17) of the relative momenta is something like a quasi-dilatation.
It can be regarded as a result of a pure Lorentz transformation in the direction of P,,
o = 1 and 2. As far as the relative coordinates (18) are concerned it is clear that the trans-
formation is a result of the quasi-dilation and a transformation which changes only the
longitudinal component (i. e., the component in the direction of the linear momentum
P,) of X, = (X} ),+(X))),- In spite of this modification, the vectors &,,a = 1, 2 may be
considered as the proper relative positions.

It 15 worth saying at this point that the relative orbital momentum I* of the pair (12)
and the relative orbital momentum 2 of the third particle with respect to the pair (12)
are invariant under all the transformation (17) and (18), i. e.,

=X xP =& xn,
P=X,xP, =& xm,. 20)

4. A symmetry group of the system

The form of expression (19) suggests that the Hamiltonian is the generator of time
translation in a generalized Poincaré group consisting of 0(9,1) and 10-dimensional
translation.

In order to simplify the formalism we use the 9-dimensional notation

(6i)i= 1,...,9 = (fla 621 ‘53)9
(m)i=1,...0 = (1, M3, m3).
The generators of the group can be written in the form
T H, Ki = fiH—n'it, I‘” = éinj—éjnb (21)

with i, j = 1, ..., 9. Clearly, the above quantities span the Lie algebra of the group in which
the product of the elements is defined as their Poisson bracket.
We find the following Poisson relations

{H’ ni} = 0,
{H, Fij} =0,
{TC,', 7'61} = 0,

{“m, rij} = ”i5mj—nj5mi,

{Twms Tij} = Ti0pj+ T ju0in+ Lind jm+ Ty jims
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{K;, H} = n;,
(K Tij} = Kibjm— K ;i
{Ki, n;} = Héyj,
{Ki K;} = =Ty, (22)

where all the subscripts run from 1 to 9.

Taking into account results of the previous section (especially (20)) one finds that all
generators (7) of the proper Poincaré group except K belong to the set of generators (21),
i e,

HaP = (7'57, Tig, 77:9) = m;,
3 3
Ju = Z Eximd m = 21 (&kmi — &), (23)
m=1 a=

k,1=1,2,3).
If we use the following notation K; = & H—nst = (K;, Ks, K,), then we get

Kok . U=XxP)xP

* T HA@E-PY @9

Therefore, the generator of the special Lorentz transformation K belongs to our algebra
in CM(123) only.

5. Grand orbital momentum

Basing on an analysis of the non-relativistic case we know that the subalgebra, spanned
by I';;, i,j = 1, ..., 6 plays an important part in the description of free particle systems.
They form an antisymmetric 6 X 6 tensor which will be called the grand orbital momentum
tensor (one should remember the connection with the orbital momenta (20)). A basic
property of the grand orbital momentum is described by the preposition: I';; = 0 for
alli,j =1, 2, ..., 6if and only if we deal with a central 3-body collision (i. e., at some
instant 7, the particle trajectories intersect: x! = x2 = x3).

From the generators I';; we construct the positive definite quantity:

6
FZ = %‘ . Z=:1 (r,‘j)z (25)

which is a suitable measure of the togetherness with which all particles emerge from or
go in towards a common region of interaction. Another important property of I'? is de-
scribed by the following Poisson bracket relations

{2, H} ={I* Py ={I? Jy}={I'*, K} = 0 (26)
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with k, i = 1, 2, 3, which can be obtained by means of (22), (23) and (24). It means that
I'? is Poincaré invariant.
It follows immediately from the definition of I';; that

6 6
I = (3 (L M3 &m* @7

Now, we introduce a ‘“‘radial” variable (in our 6-dimensional space of relative mo-
tion)

6
o= Y &
i=1
The time derivative of g is
6
) = {0, H} = (3, tm/eH. (28)

Taking account of (16) and (28) we find that

6
I’ =gy n/—¢°H*] =

i=1
3
= ¢"[M*—( _Zl m,)* —¢*H’], (29)

where M is the total invariant mass of the system.

The minimum value b of g, for which clearly ¢ = 0, may be considered as the relativ-
istic analogue of the 3-body impact distance (which was introduced by Smith for the
nonrelativistic case). It follows that it is related to the quantity I'? by the very simple and
interesting formula

Ir* = b*[M*—( ; my)]. (30)

Thus we see that given the total invariant mass of the system in the asymptotic state
(when the particles are far-away from each other, moving without interaction) the value
of I'? determines uniquely the impact distance of the particles. The above formula is the
analogue of non-relativistic expression:

I? = 2uTbh>

6. Concluding remarks

A group of three, successive transformation has led to the symmetric form of the
Hamiltonian. The Hamiltonian is a generator which belongs to the algebra of generalized
Poincaré group. This group of symmetry has enabled us to introduce the relativistic grand
angular momentum. We have found a Poincaré invariant parameter I'> which together
with the total invariant mass of the system describes the impact distance of the many-
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-particle system. This relation enables us to answer the question whether the particles
come out from the same interaction region of a given diameter.

The whole procedure has been presented for a three particle system, but can be
easily generalized to a many-body system.

The author is grateful to Professor J. Werle for suggesting the problem and for his
valuable help.
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