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NONLOCALITY AND GENERALIZED ANALYTICITY
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It is shown that for the nonlocal theory of Snyder’s type dispersion amplitudes are
generalized analytic functions of their arguments.
The true test of the microcausality at high energies are indicated.

1

In the previous papers [1-6] the nonlocal relativistic theory of elementary particles
had been suggested. The fundamental point is the assumption that dispersion amplitudes
are generalized analytic functions of their arguments. The discussion is the following.

It is known that basing on the fundamental principles of local relativistic theory of
quantized fields, dispersion amplitudes of some scattering processes were proved to be
analytic functions of the complex energy variable for fixed momentum transfer [7, 8]
and of the complex momentum transfer variable for fixed energy [9, 10] and moreover
that they are bounded by a certain polynomial for high energies.

Therefore two possibilities of modifying the microcausal principle may be down as
follows.

1. Either the dispersion amplitudes are still analytic functions of their arguments,
but they increase faster than a certain polynomial for high energy, i. e.

f(2)| > Aetz1® as z — co. )

Here A4, o and B are positive constants.
2. Or the dispersion amplitudes are not analytic functions and their real and imaginary
parts verify equations more complicated than Cauchy-Riemann’s

uy = g(vy, u,v), Uy = h(vy, u, v). 2

The first possibility had been examined by [11] and the second considered by [1-6].
It is shown that if we suppose g and & to be two linear functions of their arguments and
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the principle of correspondence is taken into account, then the general case (2) is the
combination of the two following ones:

a) Uy = — v, u, = — -1, 3
p

here

p(x,») >0, g(x,y)>0.

In particular, for p = g, we obtain the p-analytic functions. The function, whose real and
imaginary parts fulfil equations (3) is said a (p, g)-analytic function [12].

b) The dispersion amplitudes are the generalized analytic function of Vekua [13],
hence their real and imaginary parts verify the equations

u, = v,+aut-bv, u, = —v +cutdv @

or
0;1(2)+ A@f(2)+B@f (2) = 0.

‘The result of paper [5] have shown that generalized analyticity of the dispersion ampli-
tudes leads in fact to the violation of microcausality and in addition it is possible to estab-
lish a class of distribution in order to satisfy the microcausal principle given by Efimov
[14] at large distances. For the purpose of clarifying the connection between the violation
of the microcausality and the generalized analyticity of the dispersion amplitudes, the
analytic property will be considered in the Snyder’s nonlocal theory. The true test of the
microcausality at high energy are indicated in Paragraphs 3 and 4. The discussion and
conclusions are given in the last paragraph.

2

In this paragraph the connection between the nonlocality and the generalized analy-
ticity will be explained. Namely, we shall prove that dispersion amplitudes in the non-
local relativistic theory of Snyder type [15] are generalized analytic functions of their
arguments.

For simplicity, it is possible to restrict ourselves to consider the scattering of two
scalar particles

a;+b, — a,+b,.

The 4-momentums of a; and b; are denoted respectively by p; and ¢;. As is well known,
the dispersion amplitude of the above process T(s, ¢) in a local relativistic theory is an
analytic function of two Mandelstam variables

s =(p;-+q,)* and ¢ = (p,—py)*



567

For convenience, the following representations are introduced
f(s) = T(s, t) for fixed ¢
5§ = xt-+ix?,
J(s) = Uy (xt, x2)+iU,{xt, x2).

‘The functions Ugi = 1,2) are harmonic in the (x!, x*)-plane.
Let us now consider x! and x? as two moving coordinates of a certain surface which
is described by the following vector equation

r=r(x', x? ©)

im a certain 3-dimensional space.

It is easily seen that for an arbitrary nonlocal theory the equation (5) represents
a certain surface different from a plane. Indeed, it is known that in the case when the
theory is nonlocal, a certain smailest length of coordinates space must exist. Therefore
in momentum space the squares of all 4momentum are bounded by a certain largest
quantity. This means that (5) is different from the equation of a plane. The main discus-
sion follows; it is known that the microcausality of a local relativistic theory is equivalent
to the assumption that the dispersion amplitude f(s) is an analytic function of s in the
s-plane, i. e. U,(x", x?) and U,(x*, x?) verify the well-known equations of Cauchy-Riemann

-~

a d
o T e U ©
b 0

These equations are invariant under linear transformations of coordinates consisting of
rotations and translations in the (x!, x2)-plane.

For an arbitrary nonlocal relativistic theory (5) represents a Riemann space of two
dimensions, the metric of which is as follows

ds* = g,p(x)dx’dxﬁ )
here
- or or
X) = ~——r ——.
Bas ox* oxP

The vector field Uy(x?, x?) becomes now the functions given in this space. The Riemann
space allows the transformations to be more general than the linear transformations men-
tioned above

'x* = f(x). )
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The equations (6) are clearly not invariant under (8). Therefore, it is necessary to seek
other equations which fulfil the following conditions:

1. They are invariant under (8).

2. They contain only the first derivatives of Ufx?, x?) with respect to x*

3. They are a generalisation of (6).
It is easily seen that these equations are as follows

l71U1 = VzUz, (98)
[72U1 = "‘Vle, (9b)

here V, are covariant derivatives. It is clear that the equations (9) are the unique ones to
fulfil all the above imposed requirements.

By using the symbols of Christoffel I';; the equations (9) can be written in the follow-
ing form

a a A A
é’; U,— ox? U,—(I'—1I3)U, =0, (102)
i) 0 N
e U, + P U,-2ri,Uu; =0. (10b)
Or in the complex form
0 ,
6§f(8)+A(S)f(S)+B(S)f (=0 (11)

here
A(s) = 3 {(Féz—F}l—ZFfz)-i-i(l'fl——I’§2—2F}2)}
B(s) = % {(réz—rh +2Tf2)—i(Ff1—F§2+2F}2)}-

The equation (11) shows that f{(s) is a generalized analytic function of the Vekua type.
Let us now consider the important case where (7) represents a sphere. We obtain
then

1

= = ‘o = e, = 0
g11 822 V& (1+a25s)2 812
1
k=->0
a
and therefore
Sf(s) = (1+ass)~2 &(s) (12)

here @(s) is a certain analytic function. The formula (12) shows that f(s) is a generalized
analytic function with e®® given by the simple factor

exp {w(s)} = (1+a?ss)~?
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f(s) verifies the following equation

2s

0
6—§f(s)+ ﬁ;@f(s) =0

which is of type
0 ;
5/ +AGH(s) = 0.

This type of equation was considered in the previous papers [ 1-6]. This special case presen-
ted above corresponds to the nonlocal theory of Snyder type.

It is very interesting to remind that by Vekua [13] the coefficient B of equation (11)
is identical to zero, B = 0, if and only if equation (7) represents a surface of second
degree with positive curvature.

In resuming, for an arbitrary nonlocal theory, we have proved in this paragraph that the
dispersion amplitude f{(s) is a generalized analytic function of the complex energy variable.
In particular the nonlocal theory of Snyder type was also considered and the dispersion
amplitude in this case is defined by the formula (12).

It is easily seen that analogous results are obtained immediately in the case when the
s variable is replaced by the ¢ variable. Hence, it is very possible to assert that in a class
of nonlocal theories dispersion amplitudes are generalized analytic functions of their argu-
ments.

This assertion is clearly very important for studying the nonlocal theories of elemen-
tary particles.

3

Thus the connection between the nonlocality and the generalized analyticity of disper-
sion amplitudes was shown. This fundamental result plays, probably, an important role
in studying the nonlocal theory of elementary particles for the simple reason that the study
of nonlocal theory is reduced to the simpler problem of considering the analytic property
of dispersion amplitudes by means of generalized analytic function theory. It is similar
to the actual analytic theory of elementary particles.

On the other hand, the results of previous papers [1-5] show that the asymptotic
theorems, such as Pameranchuk’s theorem, which for a long time were considered as the
criterion to check the validity of the analyticity of dispersion amplitudes at high energies,
were also deduced from generalized analyticity of dispersion amplitudes. This means that
the role of those theorems, considered as the test of the microcausality, is negated. There-
fore, the following problem of fundamental value arises: what is the true test of the
microcausality at high energy?

This problem will be solved in part in this paragraph. In order to seek the true test
of the microcausality, as suggested by [4], it is very necessary to find the relations which
are deduced only from the analyticity and cannot be deduced from any generalized analy-
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ticity. To do this, let us consider, what is the fundamental feature of the analyticity of
an arbitrary function? As is known, the analyticity of f(z) is characterized by the simple
connection between its real and imaginary parts w{x, y) and t(x, y), i. e. by Cauchy-Riemann
equations. It is clear that the theorem of Cauchy characterizes fully this feature. As
the direct consequences of this theorem the dispersion relations and the dispersion
sum rules may be considered to be true tests for checking the validity of microcausality
at high energy.

In this paragraph, it will be shown that, indeed, the dispersion relations of the acausal
theory and of the causal theory are different from each other.

To begin, we notice that similar to the causal theory the mathematical basis of the
acausal dispersion relations is the following generalized formula of Cauchy:

1 -
) = i jﬂl(z, 222" = Qy(z, 2)f(2)dz".
T
4

For simplicity, we restrict ourselves to the study of the case when B = 0, and we
obtain then

ew(z) e—w(z’)f(zf)
fz) = ﬂ—.-'[ ; dz’
2mi z—z
r
here
1 ([ A
w(z) = - j ,( ) dx'dy’.
n z'—z

G

Basing on the resuits obtained in the previous paragraph, we can confirm that in case
when f(z) represents the acausal amplitude, the function ¢(2) given by

@(2) = e"“Pf(2) (13)
can be considered to be the causal amplitude and the factor exp {w(z)} characterizes the
nonlocality. Following [16] we shall examine only the so-called minimum nonlocal
theory, the dispersion amplitudes of which fulfil the following requirements:

1. Causal and acausal amplitudes possess the same spectra. This means that their sin-
gularities are to coincide to each other for finite value of arguments.

2. Acausal dispersion amplitudes verify the crossing symmetry relations.

3. Macrocausality at large distances is guaranteed. It is clear that the above mentioned
conditions imposed severe restrictions on the factor of the nonlocality exp {w(z)}. Indeed,
let T,(s,t) and T(s, t) be the acausal and causal amplitudes which are related to each
other by

T.(s, 1) = e®CITLs, 1),

(s,

The requirement 1) means that e*®" does not possess any singularity in the s- and t-planes.
Therefore, unphysical singularities are guaranteed to disappear.

It is easily seen that e“™" hasto be a generalized analytic function, as an arbitrary
analytic to fulfil the imposed conditions is identically to zero.
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The requirement 2) tells that T, verifies the relation of the form
To(u, 1) = T(s, 1)*
from which we obtain
o(u, t) = w(s, 1)*.
The macrocausal requirement 3) shows that for a certain sufficiently large value of energy,

we need to have

e v 1.

It will be shown below that by using the generalized formula of Cauchy and the above
imposed restrictions the acausal dispersion relations will be established easily.

As an illustrative example, let us consider the mN-scattering which is well known.
Let p; and ¢; be respectively the 4-momentums of nucleons and pions at initial and final
states. Their masses are denoted by M and m.

The dispersion amplitudes of this process are given by

F(s, 1) = 8,4F; (s, 0+ 3 [1,, t]F, (s, 1)

here Fi(s,t) are expressed in term of the spinor invariant amplitudes AF(s, t) and
Bi(s, 1) by

Fi(s, 1) = AZ(s, )+ $ kB (s, 1)

in which k = g,-+q,. The causal dispersion amplitudes 4F and BF are related to 4F and
B by the foilowing relations

AF(s, 1) = e*VAL(s, 1)
BX(s, 1) = e“CYBZ(s, 1).

Following Chew [17] it is convenient to introduce the new variables v and x2. Functions
AZ, BY and o now become functions of these variables. The crossing symmetry relation
reduces to the fact that w(v) is an even function of v

o(v) = o —v).

The dispersion relations for A7 (v; x*} and BZ(v; x?) are easily established

+ ¢
(V) r

Re AF(viy?) = — P J

. . 1 1
dve “%) Im Af(v')( —— F — >
, Vv =y v +v
X

m- M

e G ot
ReBa—(v;x)=2—Me v——+ )+
B

+ w

(V)
€ . . 1 1
+ —P J' dv'e ) Im Bf(v’)( F ) ,

7 vV—yv VvV 4v

22
m— af
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here

Thereby the dispersion relations for forward scattering have the form

2070 g2 g2

m?  4n m?

—wim v
D.(v) = L "™ >(1+ ;)D+(m)+

+ w0
w(v) 1 ’ ’
+ e_ k2 J‘ﬂ e'w(v') (G_"(Q + 0'_(V )> R
m

4n® ' Vv vty
D_(v) = % o™ 7om {(1+ —) D_(m)— (1— —) D+(m)} -
m m
) 5 + o0
_ 2™ ] L ] k + ?w_m k2 éﬂ P O'__,_g\i) + c(") .
m*  4rn m? 4n? K v +v vi—v
V4 — m
2M

Here D and o possess the sense given by [17]

4

It is known that the dispersion sum rules are considered as an instrument, with the
aid of which low energy region is related to the high energy one. In this paragraph the acau-
sal dispersion sum rules will be established in a simple way for illustration.

Suppose f(v) and ¢(v) are respectively the dispersion amplitudes of acausal and causal
theories. They are related by

fO) = Vo).

For the function f(v) e~“", which is analytic in the upper half plane, we can apply the
ordinary theorem of Cauchy with the contour to be the real axis and the semi circle in the
upper plane

A
§ f0Ne2dv' + | f(")e”Mdv' = 0.
—A Cy

The integral over C, can be neglected for f(v) decreasing sufficiently rapidly as v — o
and we obtain the following relation

+
f Im f(ne “Mdv = 0

which is called the acausal superconvergent sum rule.
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If the amplitude f(v) does not decrease for large v, then the sum rule is obtained by
evaluating the integral over C,. By using the Regge behaviour for high energies the sum
rule is obtained easily

A

Am,~+ 1 )
J' Imf(v)e—w(v)dv = z — Im bl(l +ema,»)‘
o +1

i
—A

This is acausal Regge sum rule.

5

The main results of this paper are as follows. By paragraph 2 it is proved that disper-
sion amplitudes of nonlocal theory of Snyder type are generalized analytic functions of
their arguments. In considering a particular case, the factor e®* which characterizes
the nonlocality, is found. With the aid of this assertion, the study of nonlocal theory be-
come more effective, therefore it can play an important role in developping nonlocal
theory of elementary particles. The latter then can be constructed in a way similar to the
actual analytic theory of elementary particles, i. e. it is necessary to establish the relations
which allow them to be compared directly with the experiment, for instance, dispersion
relations, sum rules and the Mandelstam representation. In the paragraphs 3 and 4 it is
shown that the dispersion relations and the dispersion sum rules can be considered as the
criterions in order to check the microcausality at high energies. This assertion bases on
the fact that they are different from each other for nonlocal and local theories.

For the purpose of checking directly with the experiment, the dispersion relations
of nonlocal theory are established mN-scattering processes.

The author should like to express his gratitude to his collaborators for discus-
sions on the obtained results.
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