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WAVE FUNCTIONS OF FAST-MOVING TWO-BODY SYSTEMS
By Z. CHYLINSKI
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( Received February 5, 1972)

A hypothesis is proposed which concerns the description of two-body systems in fast
motion. The main idea consists in the determination of an absolute three-dimensional space
spanned on the absolute coordinages such as those introduced by Kadyshevsky. The proposed
framework resuits implicitly in the distinguished role of the over-all centre of mass system
in accounting for the internal dynamics of an isolated system. The example of two spinless
particles is presented which, despite its relative simplicity, exhibits the most important as-
pects of the proposed framework.

1. Introduction

The derivation of a reliable procedure of describing two-body systems in the relativis-
tic theories remains up to now an extremely difficult problem. The literature on this ques-
tion is rather involved, hence we will mention only certain aspects of the problem which
are useful in further considerations. Roughly speaking, there are two ways of treating the
two-body problem: the first is based on the quasi-potential approach [1], and the second
on the Bethe-Salpeter equation [2]. According to the first approach one starts with two
free-body equations

Ryy: = Ry, =0,

where R , are the Klein-Gordon or Dirac operators, and then instead of two single-body
functions one introduces the single two-body wave function v(x,,, x,,) satisfying two

equations R;yp = R,y = 0. In the next step one modifies them by introducing ‘“‘quasi-
external” potentials V; , so that

(Ri=V)yp=(R—V2)yp =0, (1.1)
The mutual consistency of equations (1.1) imposes several constraints which make this type
of approach rather restricted. Moreover, the very “philosophy” of replacing the single
internal interaction between two particles by two quasi-external potentials does not seem
convincing. Different aspects of this approach are discussed by several authors in the
classical [3, 4] as well as in the quantum frameworks [1, 5, 6].
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The fundamental difficulty of the relativistic two-body problem follows from the
unavoidable interference between the total four-momentum of the system as a whole and
those variables which parametrize its internal structure. The same concerns the second
approach based on the Bethe-Salpeter equation. The latter can be written in the form

(RIRZ— V) '(p(xlua x2u) = 05 (1.2)

where V is an invariant function (operator) responsible for the interaction. Apart from the
fundamental difficulties of the theory of fields, the greatest disease of this approach is
that it leads to abnormal solutions which do not possess the proper behaviour in the non-
-relativistic (¢ = o) and/or the single-particle (m,; — oo0) limits [7]. On the other hand,
in both these limits we have relatively good theories — the Schroedinger equation and the
single-body equation like that of Dirac, respectively — which suggest some modification
of the description of two-body systems presented below. It should also be remembered
that the four-dimensional symmetry leads, in two- or more than two-body systems, to
relative times (energies), the physical interpretation of which is quite obscure.

In order to emphasize some properties of the single-body systems interesting for the
generalization on two-body systems, let us consider the hydrogen atom regarding proton
as the external centre of force [8]. Here the Dirac equation enables us to evaluate the
exact solution y(x,) with definite transformation properties under the Lorentz transfor-
mations. This gives at once the recipe for boosting the hydrogen atom state from the refer-
ence frame R to any other R’. Thus

Ci(f-ef)-m1 ¥ (x)=0, y'(x)) = Dy[A,}(x,—a,)], (1.3)

where D is the corresponding representation of the homogeneous Lorentz group, and
x, = A,x,+a, is the ten-parameter inhomogeneous transformation between R and R'.
Of course, the external field 4, makes the covariant Eq. (1.3) not invariant under the
Lorentz-Poinearé transformation. In the reference frame R® where the centre of force is at
rest and the boundary conditions are independent of time, one can factorize the space
from the time dependence of y, and hence deal with the positive definite (three-dimen-
sional) operator of the energy of electron and the corresponding eigenvalue problem. Thus
in the limiting case of the single-body system the question of indefinite Lorentz metric,
and hence all implications of this fact disappear [7]. The stationary solutions of Eq. (1.3)
take in R® the well-known form

¥° = ppo(x°) exp (—iE°1°), (1.4)
where E° is the total energy of electron in R°. If this state is represented in the reference

frame R which moves with respect to R° with the velocity v parallel to the z-axis, then
we have

p(x, 3, 2, 1) = D) ¥°[x, y, y(z—vt)) exp [i(Pz—ED)}, (1.5
where P = vyE°, E = yE°, andy = (1 —v?)~V/2. Let us point out that the wave function

from (1.5) determines also the boosted wave function of the hydrogen atom very similarly
as in the impulse approximation where one neglects the internal motion of the consti-
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tuents of the system [9]. This apparent approximation is strictly connected with the single-
-body problem. The lack of the translation invariance of Eq. (1.3) (external field) together
with the indefinite metric of space-time are responsible for the essential difference between
the single-body and the two- (or more than two) -body problem in the covariant theories.
In principle, the basis for determining the boost of a two-body state can be the Bethe-
-Salpeter equation, and this is one of the ways in which one introduces the so-called co-
variant- wave functions [10]. Their effective construction for fast moving systems en-
counters fundamental difficulties. In this situation one applies the expansion into powers of
the velocity v of the system as a whole, evaluating only the first-order corrections propor-
tional to v?/c2. It turns out that this relativistic distortion of a composite system starts to
play an important role in high-energy collisions. For example in the collisions of the
electron with the deuteron, the interaction and the rest-structure of the deuteron are re-
latively well known, hence, in principle, these corrections should become measurable[i1].

The tentative hypothesis proposed below avoids some of the aforementioned difficul-
ties by distinguishing implicitly the over-all centre of mass system of the whole isolated
system under consideration.

2. Two-body problem

Let us consider the system S, composed of two spinless particles of masses m,, m,.
We assume that S, has the hamiltonian H, of the following form (¢ = 1)

Hy = (B3+-P3)V2 by = (m34+-g2) 2 H(m3 -+ 24 V()
hy ——> (i, +m) @ 2u+V(E), = mymyf(m,+m,), @.1)

which determines the corresponding Schroedinger equation
i0Yjot = H,P(X, y, 1). 2.2)

Here X, P is the pair of the canonical coordinates!, where P is the operator of the total
momentum of S,, and X is the over-all “position” of S,. The relation batween X
and the centre of gravity of S, will be discudsed in the next section. The second
independent pair of the canonical variables y, g parametrizes the internal struc-
ture of S, in the y-continuum which will be clarified as our account proceeds.
Note that both coordinates X and y are, as seen from (2.2), opposed to the same time ¢,
which fact exhibits the non-covariant character of the proposed framework. In the same
way one avoids the known difficulties connected with the relative time (energy) variable
of the constituents of S, being inherent in any covariant theory. The function V(y) spanned
on the y-continuum accounts for the interaction between m,; and m,, and will be called
the absolute potential.

We postulate, and this is the fundamental property of the y-continuum, that the
canonical variables p, ¢ (as g-numbers) commute with ten generators J. v f’u of the Lorentz-
-Poincaré group of the isolated system S, [12]

I =1aJ,1=Pl=14P]=0. (2.3)

1 Generally X’,IA’ are g-numbers, but in the Schroedinger representation X=XandP= —iVx.
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These equalities ensure the absolute nature of the y-continuum and make y, ¢ essentially
different from any internal coordinates discussed by several authors, e. g. [3] and [13].
The latter are connected a priori with the space-time coordinates of the constituents,
hence they cannot commute with the generators J wvand f’,,. In our case, the relations be-
tween », ¢ and the space-time coordinates are established a posteriori, as will be explained
further on. The commutation of y, ¢ with J v i’u is similar to the commutation between
two pairs of the canonical coordinates (x;,p,) and (.f:z, 132) of two particles. Both reflect
that the corresponding degrees of freedom are entirely independent. However, the commu-
tation relations (2.3) require the following hierarchy of the description of the system:
first one must determine the internal state of S, in the y-continuum and next, on getting
from the internal laws of motion the c-number (absolute) characteristics of .Sz (such as
its spin and mass), one determines in the conventlonal way the generators J,”, P of Sz.
In consequence Jm,, P are independent of y and ¢, and thus they commute w1th ¥, q as
required by (2.3).

The structure of the hamiltonian H, (no other reason!) implies that the eigenvalue y
of y is isomorphic with the relative coordinated of the particles m,, m, represented in the
centre of mass R° where P = P° vanishes. Consequently, ¢ means the relative momentum
of those particles represented also in R°. We shall say that this isomorphy takes place
a posteriori, i. e. after realizing some internal state of S, in the y-continuum, whereas
any quantity parametrized in the y-continuum is a priori absolute. A posteriori, the c-num-
ber eigenvalues of this quantity coincide with the corresponding quantities in space-time
represented in R°. In other words, a posteriori this quantity characterized by c-numbers
can be relativized, i. e. replaced by the suitable covariant quaritities represented in R°.
The y and ¢ variables provide an example of this projection onto space-time which will
be discussed in detail in Section 3. The same projection operation, which in fact conflicts
with the orthodox covariance, is largely practised without clearly indicating its not necessarily
covariant background. For example, one evaluates the dipole, quadrupole, or higher multi-
poles of a composite particle (e. g. nucleus) in the rest-frame of this particle where its intern-
al state o is known. On getting these absolute (c-number) characteristics one identifies
them (a posteriori) with the corresponding covariantly defined multipoles represented in
the rest-frame R, of the composite particle [14]. Remember that for loosely bound systems —
like nuclei or atoms — when the non-relativistic framework works well, the y-continuum
coordinates which parametrize the internal state y of those systems mean simply the re-
lative coordinates in the Galilean space. The same projection also takes place in the
simplest case when a particle is given of invariant mass W (absolute characteristic) and
then one attaches to it the four-momentum P, (covariant characteristic) which in the centre
of mass R° of this particle takes the form P, = (0, 0, 0: W).In our scheme W is the eigen-
value of the internal hamiltonian %, which is parametrized in the y-continuum — cf.
Eq. (2.5).

The factorization of Eq. (2.2) in the X and y variables reflects the separation of the
internal from the external degrees of freedom of S,. Remember that the non-relativistic
Schroedinger equation (parametrized in the relative and the centre of mass coordinates)
has this property without explicitly resorting to the hypothesis of the y-continuum. Notice
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also that Eq. (2.2) remains Lorentz covariant in the external (space-time) variables X, ¢,
but not in the internal y-variables. So long as S, does not interact with any external en-
tity, all internal (absolute) characteristics of S, can be evaluated in the y-space, hence the
projection onto space-time is of pure kinematic character. Another situation takes place
for interacting systems, and this will be discussed in the next section.

According to the factorization of ¥, let us take the particular solution of (2.2) of
the form

¥ = pyu(y) exp [i(P X—ED)],

where yu(y) is the eigenstate of I;z to the eigenvalue W

hyyw(y) = Wyy. (2.5)

Equation (2.2), as the Klein-Gordon equation in the X, ¢ variables, leads to the relation
W? = E?— P? which shows that W is the invariant (absolute) mass of S,. In the centre
of mass system R® where P = 0 the wave function (2.4) takes the form

V¢ = py(y) exp (—iWt9),
and P° fulfils the equation
i09°[0t° = (@ +mDF+(@ +mD+V)I¥ D, 1) = WY* (2:6)

known as the semi-relativistic equation of two-body system [15]. Since a posteriori the
argument y of ¥° can be identified with the relative space coordinate x° = x5 —x] in R,
the wave function ¥¢, which means ¥ projected onto space-time continuum (represented
in R), takes the form identical with ¥ except that y is to be replaced by x°. Thus

YW = yu(xf) exp (—iWt°). 2.7

From the covariant formulation point of view, the four arguments x¢, ¢ of ¥° do not
parametrize a four-point, much as the four quantities ¢, W do not form a four-vector
either. Within the covariant approach we deal namely with two four-vectors (X, ¢) and
(x, At} and the arguments of ¥° are: the time coordinate ¢ of the first four-vector, and
the space x of the second — both represented in R°. The absence of X°in ¥° is obvious
as P =0, while the absence of 4¢°is due to the single-time formalism implied by Eq. (2.2).

Let us suppose that the mass m, of one of the constituents of S, tends to infinity.
Inserting ¥© = y° exp (imt°), Eq. (2.6) takes in the limit m; — oo the following form

ioyfor = [(@*+m3) + V() Iv‘(y, 19 (2.8)

which has the stationary solutions (y = x°)
" = pr(x°) exp (—iEt°), 2.9
where E° = lim (W—m,). The limiting equation (2.8) becomes covariant in the variables

myg .00
(y = x, ), hence now the four coordinates (x°, 1) parametrize the four-point x, (in R°).
Consequently, in the same limit m; — o0, the four quantities (¢ = p, E) also become
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relativized and coincide with the four-momentum p, of m, (represented in R°). The singul-
ar character of the limit nt, — 0o consist in the fact that the time component ¢ of tha four-
-vector (X, t) and the space component x of the second our-fvector (x, A¢) constitute the
four-vector x, of the particle m,. This type of singularity characterizes all processes deal-
ing with an external field which breaks the translation invariance of the theory. Here the
infinitely heavy body m, becomes the centre of force being at rest in R°, hence V() = V(x°)
means now the external potential of definite transformation properties under the Lorentz
transformations. Strictly speaking, V(x°) becomes (a posteriori) the fourth component of
the external four-potential whose space components vanish in R In the same limit the
wave function y° from (2.9) coincides with »° from (1.4), and R is identical with R°.
Thus the y-continuum hypothesis does not modify the single-body problem.

3. Projection onto space-time

In the case of S, interacting with an external entity one must perform the projection
of the internal state of S, (obtained in the y-space) onto the equal-time space of some
reference frame R. In fact, one deals here with the three-body problem when, according
to our picture, one must distinguish between two essentially different cases: a) when in
the asymptotic state of the whole three-body system S, the subsystem S, is in a given bound
state, and S, as a whole is in the scattering state with the third body, b) when in the asymp-
totic state there are no two-body bound states. For example, all three particles can create
a bound state. In both cases the y-continuum of the whole system S; coincides (a posteriori)
with the over-all centre of mass system R“. However, in the case a) — which we shall
discuss — one must first determine the internal structure of S, and then project it onto
space-time of R, while in the case b} the structure of S; is determined from the beginning
in the absolute y-continuum of all three particles which requires the suitable absolute
hamiltonian fzs to be dealt with. In the case a) the Lorentz contraction of the bound state
of §, — i. e. some boundary condition — will afect the very interaction of S, with the
third body. There is no room for such an effect in the case b).

We restrict ourselves to the case a), and we consider the projection of a given two-
-body state w(y) onto space-time represented in an arbitrary reference frame R. The first
part of this projection was done in the previous section when the coordinates y, g were
(a posteriori) identified with the relative coordinate and momentum, respectively, of m,
and m, in their centre cf mass system R. Thus we put

X = X,—X{,p = ap,—bp, (a+b = 1) (a)
where
y=x%q=7p b G

the parameter a is so far arbitrary (p° = ¢ for any a). Since the projection onto space-time
introduces as such the Lorentz coordinates of the constituents of S,, thesrelations (3.1)
can bz completed to the four-dimensional language by putting

At = t,—1t, po = Apr0—bpi0, (3.2)
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where p,o = E;, P20 = E, are the energies of m,, m,, respectively. We then obtain the
four-vector x, = (x, 4t) and the canonically conjugate relative four-momentum p, = (p,
Po). In fact, the determination of p, requires the energies E; , of the constituents of S,
to be well defined, which takes place for free particles or in the asymptotic region of the
scattering states only.

Together with the relative form-vectors x, and p,, let us define the second pair of
the four-vectors X, and P,, where

Xﬂ- = axlu+be#, Pﬂ = plu+p2u' (3.3)

Let us assume that pg vanishes, this being implied by the pure space characteristic of

S, given by the three-dimensional y-continuum parametrization. In the covariant picture

this corresponds to the subsidiary covariant condition P,p, = 0 which one imposes onto
(covariant) two-body equations of motion [1,6]. The vanishing of pg implies that

a=a=3%[+2—m W2 > myfmi+my) = Gy, (3.4)

C—+00

where W always means the invariant mass of S,. The coordinate
X =ax,+(1-a)x, (3.5)

is then called the centre of gravity (mass) of S,. It is assumed that (3.4) holds also for the
bound states of S, when W < m,+m,, which is consisten tbecause (3.4) only requires
S, to have a well-defined invariant mass W. Since & is an invariant, the centre of
gravity (3.5) determines a covariant point which is unlike the usual picture where the
““centre of gravity” depends on the reference frame [16]. This important fact follows from
the hierarchy of the description of S, implied by the proposed framework. The centre of
gravity X is determined a posteriori, provided that the internal state of S, and its invar-
iant mass W are already determined from (2.5) in the absolute y-space -— ¢f. (2.3). Note that
it is a peculiarity of the non-relativistic framework, due to the lack of energy-mass rela-
tion, that ayg is given a priori through the masses of the constituents of S, , independently
of the internal state of the system S,.

Let us consider for the moment the free-particle system S, (V' = 0), and the plane-
-wave solution of (2.2) equal to

Y = exp [i(PX—Et)] exp (iqgy). (3.6)

The external phase PX—Et is manifestly invariant, while the internal phase gy is also
absolute because it is represented in the y-continuum of §,. However, in order to get the
corresponding equal-time wave function ¥ in the reference frame R where the external
phase is represented, we must perform (a posteriori) the projection of the phase gy onto
R. From (3.1), and taking into account that pg vanishes, the internal phase can be rewritten
in the Lorentz coordinates

qy = qy—pidt° = pix; = p,x, = L—inv... 3.7

This identity takes place for any four-vector x, = (x, At) provided only that x° = y as
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stated in (3.1b). Thus we define the class of the four-vectors x{¥ = (x®, 41™®) such that:
1° ¢ =y, and 2° x{Plg = (x'®, 0). In consequence, the identity (3.7) expressed in terms
of x{® takes the form

(R)

qy = px{ B e

= px = px = L—inv. (3.8)

{we further omit the superscript R understanding by x the space component of xftR) in R).
Thus we deal with the absolute three-dimensional phase px, although its form is not
manifestly covariant, as in each reference frame R the four-vector xLR) depends on the
reference frame R. The class of four-vectors x4 accounts for the description of the space
extension of a “‘rigid body” which is at rest in a fixed reference frame R°. We treat the
shape of the internal structure of S, described by the wave function y(y) = p(x°) on
exatly the same footing as a realized “‘rigid body”. On the other hand, the covariant wave
functions, besides the Lorentz contraction, account also for the internal, space-time
motion of the constituents of S,, which results in additional effects of the relativistic dis-
tortion [11] being absent in our picture.

According to the identity (3.8), and taking into account the transformation properties
of p and x (as — a posteriori — the space components of the corresponding four-vectors),
one easily finds the relations between y = x° and x, and ¢ = p® and p which completes
the projection operation. Let us denote by L(v) the three-dimensional transformation
which reflects the Lorentz contraction in the direction of v, where » = P/(P24+-W?3)'2 is
the velocity between R and R. Then

x =L(v)y,p = qL(v), (3.9

and px = [qL-*(v)} [L(v)y] = ¢y = L-inv., as it should be.
Now let us reconsider the wave function (3.6) written in a general form which does not
require the system S, to be free

¥ = exp [i(PX—En)] 9(¥) (3.6)

{in particular, (y) can be equal to exp (i ¢p) as in (3.6)). If y(y) is projected onto equal-
-time space represented in R, then

¥ = [y(v)]7 exp i(PX—En)] D(v) y [L~'(v)x]. (3.10)

Here D(v) is the unitary operator of the representation of the Lorentz group which
boosts 4 from R° to R, and the factor /> ensures the invariant normalization of y:
fd3xip|? = 1. Moreover, as the projection requires that p§, = 0, the coordinate X in (3.10)
must denote the centre of gravity of S, — ¢f. (3.5).

When S, interacts with a third body, then the absolute y-continuum of the whole
system S, becomes a posteriori equivalent with the parametrization in the over-all centre
of mass system R®. Therefore the internal state p(y) of S, must be projected onto the
equal-time space of R,

Finally let us point out that for a free-body system described by the plane wave we
have from (3.1), (3.3) and (3.7) the following identity

¥ = exp [((PX—Et)]exp (iqy) = exp [i(p,x,-+prx2)—i(E +Ey)t] = q‘/}’lh-
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Thus ¥ is identical with the product of two plane waves of each of the constituent taken at
equal time ¢ of any given reference frame R. Therefore the modification implied by our
hypothesis concerns only bound states, i. e. new (composite) particles of finite size. Roughly
speaking, free particles behave as if they had their world lines transforming — as such —
covariantly, which ceases to be the case for “trajectories” of bound particles. From this
point of view our picture resembles that [17] where the notion of the world line as pure
classical concept is abandoned.
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