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A new method of reduction of arbitrary quasirelativistic quantum-mechanical eqguation
for two charged Dirac particles to the Pauli formalism is presented. The advantages of this
method are:

1) it gives a criterion for choosing the most suitable form of quasirelativistic equation
from among apparently equivalent alternative possibilities,

2) it permits considerable simplification of formal calculations and provides some
demonstrative interpretation of intermediate results,

3) it makes possible direct generalization of results to arbitrary number of identical or
different fermions,

4) it leads to the definition of other particle observables (understood in the sense of
Foldy-Wouthuysen “mean operators™) which together with the Hamiltonian determine the
basis of quantum-mechanical description of such systems.

1. Introduction

The generalization of the quantum-mechanical description of a charged Dirac particle
in an external electromagnetic field to the approximate “‘quasirelativistic” description of
a system of interacting particles has been widely discussed in several monographies, e. g.
by Bethe and Salpeter {1], Bethe [2], mainly owing to the importance of this problem
in accurate calculations of theoretical spectroscopy of simple atomic system. The first
quasirelativistic two-particle equation has been proposed by Breit [3] on the basis of the
assumptions of quantum electrodynamics. This equation has found wide applications in
spite of some drawbacks resulting from the neglection in its derivation of the hole theory.
In 1951 Bethe and Salpeter [4] derived on the basis of the Feynman formalism a new
covariant equation which also describes the bound states of two fermions. Salpeter [5]
then brought this equation to the form of approximate three-dimensional wave equation.
After further transformations (Hermitization of the term which describes the interaction
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between the particles) Barker and Glover [6] have obtained a quantum-mechanical equa-
tion of a type similar to that of the Breit equation (for absent external field) but differing
in the term describing the interaction between the particles. This particular quantum -me-
chanical equation will be called in the further text the Bethe-Salpeter equation.

The starting point for practical applications is most frequently not the complete
quasirelativistic equation (in the product space of Dirac spinors of the particles forming
the system) but the reduced equation which describes the system of particles in its positive
energy states by means of a suitable effective Hamiltonian. Such an approximate Hamil-
tonian can be obtained (up to second order terms in the fine structure constant a=e?/hc)
both by reduction of the quasirelativistic equation and as a direct consequence of the
assumptions of quantum electrodynamics. Hanus and Janyszek [7] have given some argu-
ments in favour of the first method regarding it as more correct for the study of the system
of interacting Dirac particles. The problem of reduction of a two-particle equation has
undergone the same evolution as the analogous problem of one Dirac particle. Breit has
applied to his equation the earliest known method of elimination of small components of
the spinor thus obtaining the Hamiltonian with non-Hermitian second-order terms,
similarly as in the case of the Dirac equation reduced in such a way. Besides in the reduced
Breit equation there appeared a term proportional to the fourth power of the charge which
was in disagreement with the spectroscopic data for the helium atom. The rejection of
this term, as due to incompletely separated negative energy states, required the use of ad-
ditional arguments (quoted in Refs [1] and [2]). It is well known that the method pro-
posed by Foldy and Wouthuysen [8] of the reduction of the Dirac Hamiltonian after
previous transformation of this Hamiltonian to the so-called even form (in which the states
with opposite signs of energy are not mixed) by consecutive unitary transformations (“‘the
FW-transformations’) played an important role in the quantum-mechanical interpreta-
tion of this equation. Direct generalization of this method to the case of reduction of two-
-particle equations has been carried out in a series of papers by Chraplyvy [9, 10], Chra-
plyvy and Glover [11], and Barker and Glover [6]. These considerations pointed out
the singularity of the case of the Breit equation for particles of identical masses and the
necessity of replacing in this case the postulate of complete reduction of the Hamiltonian
by a less strong condition which leads to an infinite class of transformations (some of
which being non-unitary). These transformations lead to a form of the Hamiltonian
which separates only positive (or only negative) energy solutions although the final form
of the reduced Hamiltonian is the same in both cases.

It is the purpose of the present considerations to present in detail a new method of
reduction which, though also originating from the idea of Foldy and Wouthuysen [8],
shows apart from some similar features also essential differences compared to the method
proposed in Refs [9] and [6]. The present method refers to the Case transformation {121
and its further interpretation proposed in the paper of Garszezynski and Hanus {13} In
addition to the properties discussed in detail in Section 4 the method is characterized by the
fact that together with the gauge invariance condition it defines unambiguously the general-
izati on of the Bethe-Salpeter equation to the presence of external magnetic field. It also
justifies the choice of this equation and not the Breit-Wigner equation as the basic quasi-
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relativistic equation for two Dirac particles. These considerations provide detailed justi-
fication and extension of the results presented in an earlier paper (Hanus and Janyszek
[14]) in shorter form.

2. Generalization of the Case transformation to the two-particle problem. Transformation to
“intermediate scheme”

1t has been found by Case [12] that rigourous transformation of the Dirac Hamil-
tonian to the even form is still possible in the presence of external stationary magnetic
field, and that the form of this transformation is a simple generalization of the Foldy-
-Wouthuysen transformation for a free particle. Then it turned out (Garszczynski and
Hanus [13]) that the application of this transformation to the case of electromagnetic
field, though not leading to completely even form of the Hamiltonian, results in such
a form in which the distinction of even and odd terms has a deeper physical meaning and
introduces some orderly arrangement thus facilitating their further physical interpreta-
tion.

In accordance with Ref. [13] the Dirac Hamiltonian?

e
H = gsmc’+coz+ed, z= o-<p~— ;A) (1)

transformed by means of the Case transformation

"z
Il =exp(iS), S=1%o,tg7" (*) )}
mc
in the approximation accepted has the following form
2 4
p p e eh ,
H = - s~ — [P, A]s— — o
u= % {mc * 2m  8m’c*  2me L. 41+ 2me s
A c) B S E)—0, 2" oE 3)
— - —55 divE— — xp—pxE)—p, — oF,
2mc? ( 8m?c? gm2c2 PP %2 e © (

and thus contains all expected even terms and an odd term proportional to g,. The elimi-
nation of this redundant term is ensured by an additional unitary transformation

’ s r 7 eh
o' =exp(is), § = 015 373 oE (4)

which, however does not influence the shape of correct even terms.

' The notation and the symbols used throughout this paper are the same as those introduced in the
previous paper of Hanus and Janyszek [7]. The quantities referring to two or more particles are denoted
by the subscripts K, L = I, II, ... N. All calculations are restricted to second-order terms in the fine structyre
cionstant «. According to the commonly accepted convention the order of magnitude of the expressions
is estimated by powers of ¢~' (which corresponds to the introduction of the atomic units system).
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The transformation (2) can be generalized to the two-particle problem. It then be-
comes the form

U = 1Lilln = ulls (5
z e

Ok = 7 02,k tg”! (_K_) s  Zg = Oy (PK_ = A?) , K=T11II. 6)
mgc ‘ c

We shall apply (5) to the transformation of the Breit Hamiltonian and to the generalized
Bethe-Salpeter Hamiltonian proposed in Refs [7] and [14] on the basis of the properties
of the transformation [T and the gauge invariance postulate (for details see Appendix A)

HB == H[+H“+ V, HBS = H[+H“+ W, (7)
Hyg = gs,Kch2+cgl,KzK+eK(b§<‘, ®
1 1 1 .
V==e-el|-~-011" 00} W= [21‘*‘411’ V]+’ ®
r 2 4
0 o, r{oy-r
J == '_I”‘l‘l + gkl—l:(;l—)y r=rn—ry r= irt’ (10)
r r
A =T (T 7% Ty = Qa,xmxcz“*'cﬁ'i.xzx- 11

One can expect that this transformation does not perform complete separation of
states with different sign of energy. It turns out however, that the “intermediate scheme”
obtained in this way will play an important role in the comparison of the properties of
the investigated quasirelativistic Hamiltonians. The form HY = 1T HgIl*, where Hy is
given by Eq. (8), results directly from Eq. (3)

2 4
Pk Pk €k exh
HY = Mgl e = s — LAY, — P 2umn
K Qs,x{ K 2myg Sm?(cz Imge [Pk 4K+ 2mye Ok K
2 2
ey exy2 eKk . ex eKh ex 133
—— (4 — e diVgER — —5— o (EX' X px—px X Ex)+
+ 2mxc2( K) } Smic? SR k(EX X px— px X Ex)
exh
— 02k —— 0xEQ, (12)
Zmygc
where
EY = — gradg ®Y, Hy = rotg AR, (13)

It is thus necessary to calculate only those terms which represent the interaction be-
tween the particles, and first of all V. After lenghty but elementary calculations one

obtains
‘ (1 1 1 iege; 1
o= 5K\~ > 01,501, | o2 2mge ZKks = ~+
KL
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exey, exer 1
— @3,k @1,L [ZK9 Jle—02x" O, 31 %2k} ZL> ~ +
4dm 8mgmyc ri. |

exeyr 1 exe
_Ki“z I:ZK, I:ZKa ;] ] —03,k03,L Sz [ ZK, [ZL, J]+]+

B 8myxe 16mK mpc
ex - e
+ —s—1zp, L2k, J , i4
01,k01,L 16771,2(62 [zx> 26, J] 41+ (14)

where >’ denotes summation over K # L (both of which for the time being become only
K,L

the values I and II). The expansion of the commutators and anticommutators appearing
in Eq. (14) leads to an extremely complicated formula which, however, can be written in
a much simpler form by introducing some suitable notations. One can assign special
physical meaning to these notations. We shall still continue to write the particular terms
in an order according to the components of gx and to separate the particular powers
of ¢! for the sake of clarity in the arrangement of these terms according to consecutive
orders-of approximation. We accept the following denotations:

1 exh .
- YK,L = - oEQ, (15)
2mgc
1 exh?
? Ok = — %‘K_‘ divg Eg ;, (16)
1 exh
— Fgp = ~ 2.3 ox(Ex . X px —Px X Ex 1), an
c 8myc
1 exh
— Ggrp = — ——56x (E g XPpL—PL % E, %), (18)
¢ 4mgm c
1 exe h? (oxo (6x-r)(oL-r)
5 Dyp = { Ko _slox e D) sl (19)
¢ 4meLc r r 3
1 exeh? (oxo (6x " r)(o,-r) 8n
S Mg, = XL K3L -3 5 = — — axo 0(r) 20
dmgm;c r r 3
1 exey 1 r
5Ly =~ ———5<-pxPrt+ 5 EPIPLY» 2D
c 2mgmyc” | r r
1. e . o
~Pygp = ag.]. +ho-KbK,L)a (22)
2m
1 2 ex 2 2
?PK,L = - C([PK, ay ]+ +hogbg ), (23)
K
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where
. e oL P)r . ~
ax,L = ‘21: {ﬂ + (—“L‘sl} » by =rotgag,, 24
r r

. e, (1 r oLXF K <L
v, = - p+ —=(r 4+ %, for 25
KL szc{rPL rs( pOE 3 } * {K>L (25)
3K,L = l‘OtK ";K,L‘ (26)

The following relationship hold in addition

32 Pgr =2 G Lgr+ 3 Mg +Gy ). (27)
KL KL

Detailed calculations concerning Eqgs (22)-(26) are given in Appendix B, where a demon-
strative interpretation of the quantities &K, L and éx, L as some operator generalizations of
the vector potential for the case of magnetic interaction between Dirac particles has also
been introduced. Such interpretation suggested by the form of Eqs (22) and (23) sheds
some light on the structure of the expressions discussed, although it is not necessary to
make the formal transformations based on Egs (22)-(27) whose aim is only to simplify
the form of final results calculated in this section. The terms (22) and (23) are equivalent
to the term appearing in the Pauli equation, as it can be seen from their explicit form.
It has already been mentioned before that the quantities defined by Eqs (15)-(21) have

some direct physical interpretation: — Yy ; represents interaction of the electric dipole
c

moment of the K-th particle ex h ax/2mKc with the electric field due to the L-th particle.
This term corresponds to the one-particle Hamiltonian with the field Ex (12). Similarly

1 i . . .
— Ok, and — Fg,j correspond to the corrections of Darwin and Frenkel-Thomas in the
¢ ¢

1 .
Hamiltonian (12). On the other hand — G, represents the interaction of the K-th particle
c
. . . .1
spin with the orbital angular momentum of the L-th particle. The expression —- My,
C
. . . . . 1
is the well-known expression for the interaction of two magnetic dipoles. The term —- Dy,
¢

. . L. o1 .
corresponds to interaction between two electric dipoles, while —- L ; represents orbit-
c

-orbit magnetic interaction. The symbols with two superscripts K, L denote the result of
action of the L-th particle on the K-th particle, e. g., Ex ; is the Coulomb field produced
by the L-th particle at the point at which there is the K-th particle

e
EK,L = — gradK ¢K,L’ (pK,L = 7" . (28
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The denotations and abbreviations introduced in Egs (15)—(28) permit ¥, to be expressed
in compact form. Indeed long and elaborate calculations yield:

ieger 1 1
ex - ep 1. ex o
~ 2 [ZK’ Jls = ‘PKL+ 7k, A, (30
my myc*
exer, 1 1 )
T 8mic? Zg> | 2k ; =2 (Qx.LtFx,0)s 3D
K - |-
eK * eL 1 1
~ e 2| %0 | %L = —; Dg 1, 32
Smech[ K [ L r]_]_ a2 Pri (32)
exer, 1 .
- I6m m z[ZKs [ZL’ J]+]+ = 2 ZPKL: (33)
kMmie
ex€L [ze [z 71+ ] 1 mg Go + L fmg my M
——— [ 2% | Z&> = — — =2
6 2 2 K K +1+ 262 mL K, L 462 "’lL mK KL+
+ g lox s Pruls (34)
K

Hence we obtain the final form of the transformed Breit operator

‘(1 1 1/1 1
Vu = E _{5 exPg L+ 2 (QxL+Fr)tosx 03 2 <§ Lo+ > MK,L+GK,L> +
KL

1 1 1. ex
+ 0, K7 YL+ 02,x02,L 55 Dk, + 03,011 <Z Py + ol aK,LA;{x> +

K

2c

1
+ — —Gx1— — My, +
01,k01,L [2c2 my, KL 23 ) KL

mg 1 mK my
mL mg

i (ex eLJ+ ! o [oxPx, x, LP] ):I} (35)

In a similar form one can express the operator Wu = [I WII*. Since from the pro-
perties of the transformation IT it follows that

A = AT = LAl = 034 (36)

we obtain

Wy = 7 Lositesm Vi l+ 37
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Thus the calculation of W, is reduced to the substitution of (35) into (37). Straightforward
calculation yields

"1 1 1 1
Wa = E {5 (03,x+03,1) [‘2' ex Py L+ p (QK.L+FK,L+ G+ ELK,L'}'

K.L

1 i [ I e .
+-M J 0, x — Y40, xl— Py« Y Fll R 38
3 K,L>] 02,k03,L 50 (KL 01,k (26 L+ Imge ap xAp )} (38)

By extending the denotations (15)-(17) and (23) to expressions which are dependent on the
external field and appear in Eq. (12}, i. e., putting

i e h
— I:x _ K G'KEe'x, (39)
¢ mgc
1 ex eK,lz d' Eex 4
Cz K = Sin,Z(CZ 1Vl( K» ( 0)
1 eX eK,l X £eX
—Fx = — 753 ox(EX x px—px X EY), 4D
c 8 mixc
1 ex ek ex ex:
-Pgx = — ([pk> AX ]+ +hax #K), (42)
c 2mgc
we obtain from Eq. (12)
2 4 2
Px Px t ex
HY = nge® + —— — 3 + - PR ——— (A% +
K= 0k {] K¢ 2my  8mic? ¢ € 2ch2( ©)
X 1 €X ex 1 FeX
+ex K+'C_2(QK+FK)+QZ,KE)K- 43)

The formulae (43), (35) or (38) give the final form which in the intermediate scheme I
have the Breit and the generalized Bethe-Salpeter Hamiltonian, respectively. In accordance
with what was expected there are still odd terms in both Hamiltonians (which contain
the operators g, x and o, k). For this reason the above-mentioned scheme is called the
intermediate scheme. Nevertheless the transformation [[ (similarly as the Case transfor-
mation for one particle) has already introduced far-going arrangement of terms accoidng
to their physical meaning. It is interesting to compare the even terms of both Hamiltonians.
If one puts g3 x = =+ 1, then both Hamiltonians become identical and represents the total
correct reduced effective Hamiltonian in the subspace of positive energy states. Hence it
can be seen that further transformation of these Hamiltonians would be reduced to finding
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additional unitary transformation which would remove the still remaining odd terms,
but wnich would not change the correct even part of the Hamiltonian. In this respect
the properties of both Hamiltonians are completely different. As it can be seen from Eq.
(35) the transformation [] turned out to be completely useless in case of the Breit Hamil-
tonian since it did neither remove the odd-odd term for the magnetic interaction of the
particles nor even decrease its order of magnitude. This term, i.e., —4 e - eyorr - 0y J
rethained unaffected (gaining a second order contribution only). It is also not possible to
remove this term by means of the modified Case transformation (discussed in the paper
of Janyszek [15]) to which magnetic interaction has been added. As it is well known,
the authors of Refs [9-11] succeeded in constructing a transformation of the Breit Hamil-
tonian which reduces the latter to even form for the case of two particles and which sepa-
rates only a positive energy state solution in case of identical particles, what changes
essentially the physical meaning of the transformation. It should be pointed out, however,
that the difficulties connected with the appearance of a controversial term proportional
to the fourth power of the charge have not been eliminated. Some suggestions about its
origin are given in Appendix B. All this indicates that the main source of difficulties is
the structure of the Breit interaction itself (in particular of this part which is proportional
to 041 " 01.m) s a result of neglecting the assumptions of the hole theory in the derivation
of the Breit term. Indeed the replacement of the term for the Breit interaction by the cor-
responding Bethe-Salpeter term changes essentially the structure and the properties of the
Hamiltonian. The Bethe-Salpeter term is

BS 2 Pf( Pz 1 912( 2
H> = 4] mupc™+ — — —— + P T (A4AY +
o : ,{‘“{I: K 2m,  8mic® ¢ K 2chz( ©) ]
I3
ex 1 ex €eX 1 €X
+exPx + c_z(QK +FK)+92,KZ Yo +
"1 1 1
+ 5(03,1{4‘ 03,1) 2eK‘pK,L+ e Ok 1+ Fgr+Gg L+
KL

1 1 1
+ - Lg+ = MK,L>] +02,x" 03,0 Yxt

2 2 2¢
1 s €k - ex
to, | Pxot — ag- AX 44
2c myc

and contains no more odd-odd terms (which are proportional to. €1y 01pand 9z1° 021
respectively), since the latter vanished owing to the anticommutator appearing in W .
The still remaining odd terms (of the first and second order) can be, however, easily eli-
minated by means of a single unitary transformation which does not change the form of
even terms.
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3. Additional transformation of the generalized Bethe-Salpeter Hamiltonian to even form
and its reduction. Generalization for the case of N fermions

As it can be seen from the shape of the Hamiltonian Hﬁs (Eq. (44) the situation is
similar to the one Dirac particle case (Eq. (12). Thus it is sufficient to construct a single
unitary transformation according to the Foldy-Wouthuysen iteration procedure, namely

II' = exp (iS"), (45)
, 1 1 L 1NV 1 .
§'= - GyE ;1‘; “e1x¥k T 5 ;; 01,k @3,.YkL— 02k | PLxt
K KL
€L ex
+ —— a; xA¥ (46)
myc -~

and after comparatively simple transformations one obtains

2 4
! r r p p €x
H =HHI.;S(H)+= E JQs,KI:mKCz“*' . 2 Iy 2( 24
K

2my 8m§c

1 ex €X 1 ex ex ’ 1 1
+ B PK_J +exPy + 2 (O +FY } + E {5 (e3,x+03.1) I:’z‘ exPx 1+
KL

+ ciz <QK,L+FK,L+ Gkt % Lg.+ %MKL>:|} . 47)
This is the final even form of the generalized Bethe-Salpeter Hamiltonian (which contains
only the terms with g3k, or such which do not contain the gx operators). It can be seen
from the form of this Hamiitonian that complete separation of positive and negative
energy states is possible. In the preceding considerations there was no necessity of using
the concrete representation of the Dirac operators. Only now we choose g3 x in diagonal
form. Hence it can be seen that there exist four possible states which belong to four pos-
sible combinations of the eigenvalues of the operators 031 = *1, g3u = 1. The choice
of the eigenvalues g3 x with opposite signs gives rise to vanishing mutual interactions of
particles (in accordance with the assumptions of the hole theory which is valid just here).
If we accept in particular g3y = g3y = *1, we obtain the well-known form of the
reduced effective Hamiltonian in the subspace of positive energy states:

2 2

Px PK 1 €x 2,

Hy = mee? + — + - P&+ AF
eff : :{ K 2mg Sm?(c2 c K72 KZ(

1 N Z 1 1
+ex Py + pe QX +Fx } + {E exPx L+ e @kt
KL

+Fy1+Gr+ 7 Lg+ 3 MK,L)} . (48)
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This Hamiltonian is the final aim of all methods cf reduction and the basis of the quantum-
-mechanical description in the Pauli formalism for two charged Dirac particles in an ex-
ternal electromagnetic field. It should be noted that contrary to the single-particle case the
additional unitary transformation does not commute with the transformation II in the
accepted approaimation. The role of the transformation 1’ is restricted to introducing
into the Hamiltonian (44) those terms which compensate the superfluous odd terms owing
to the commutation conditions between S’ and the terms p; gmgc?.

The generalization of the Bethe-Salpeter equation has so far been done for two part-
icles only. This equation, however, can be directly generalized for the case of an arbitrary
number of fermions (both identical or not) by assuming that the indices K, L become I,
II, ... N. We thus obtain

H® = Z Hy+ % xg' . Wi Wir = 3 [Act4n Virdss 49
1 1

Ver=c¢ex e |— —zo1x 0u,dkr ) Yro=rtc—FL Ty = |rgLl (50)
rern 2

The generalized Case transformation will in this case be the product of N mutually
commuting Case transformations for the particular particles of the system. In the inter-
mediate scheme we obtain Eq. (44) in which the summation should be extended from I
to N. The additional unitary transformation and the final even form of the N fermion
Hamiltonian is expressed by Eqgs (46)—(48) (after extending the summation from I to N).
In the case of N fermions there are 2V possible states with definite sign of energy which
belong to 2¥ possible combinations of the eigenvalues o3 = L pay=l..035=
= =+ 1. In particular, if we select all g3 x = -+1, we obtain the reduced effective N fer-
mion Hamiltonian which can be accepted as the basis of the quantum-mechanical descrip-
tion in the Pauli formalism of a system of N charged Dirac particles in an external electro-
magnetic field:

N
2 4 2
Pk Px 1 ex
H(eN) — m C2+ K iy LN A 2
ff X 2mg 8m,3<c c K7 2m MigC 2myc’ (Ax)"+
K=
N
X 1 X exX ' 1 1
+ex®y + 2 QK +F5); + 5 ex<px,l.+c—2 (Qx,L+
KL=t
+Fg+Ggr+ 5 Lyt MK,L)} . 629

4. Discussion of the results

The above considerations which concern the reduction of quasirelativistic two-
-particle equations have shown that out of the two alternative possibilities, i. e., the Breit
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and the Bethe-Salpeter equation, the latter can be regarded as the basic quasirelativistic
two-particle equation. Its generalization taken together with the gauge invarianec condi-
tion is uniquely defined. The reduction of this equation leads to a correct effective Hamil-
tonian in a simple unambiguous way without any other additional assumptions. This reduc-
tion is free from several difficulties which appear in attempts of applying analogous
procedure to the Breit equation. The results obtained contain both the case of different
and identical particles (after including the obvious postulate of antisymmetrization of the
state vectors). The generalization of the considerations for the case of arbitrary number
of particles turned out to be simple owing to the fact that in contrast with the earlier
methods of reduction we did not make use of the concrete representation of the Dirac
operators nor of the matrices constructed from these operators (in the 16 x 16 product
space). The method of reduction applied does not contain any ambiguities® which appear
in the application of the Foldy-Wouthuysen iteration method in Refs [6, 9, 10 and 11].
The generalized Case transformation brought the quasirelativistic two-particle Hamiltonian
to the intermediate scheme which is of considerable importance for illustrative interpreta-
tion owing to the simple geometrical meaning of this transformation. In particular, the
analysis and the comparison of the Breit and the Bethe-Salpeter Hamiltonian provided
additional arguments in favour of the latter as the basis of the quantum-mechanical
description of the system of Dirac particles. The supplement of this transformation
by a simple additional unitary trnasformation which has only ancillary meaning,
has brough this Hamiltonian to even form which permits complete separation of the
subspaces belonging to different signs of energy. This additional unitary transfor-
mation will be of no importance for the transformation of the remaining particle obser-
vables owing to the high order of terms appearing in S’ (Eq. (46). These observables are
only approximately transformed by the transformation [I. In analogy to Foldy and Wouthuy-
sen (Ref. [8] quoted before) it is possible to make an attempt of defining mean value opera-
tors based on the transformation II. This problem, however, requires further study in
respect to its physical interpretation. Novertheless the results of the presents paper
indicate how to study those particle observables, which together with the Hamiltonian,
define the basis of the quantum-mechanical description of the particle system. The
above considerations make clear the essential role of the transformation II in the
quantum-mechanical description of a system of Dirac particles.

The range of applicability of the many-fermion Hamiltonian presented in this paper
can be considerably extended by taking into account the anomalous magnetic moments
of the considered Dirac particles which can be included by means of the well-known
phenomenological methods. This problem, however, requires still many additional considera-
tions and complicated calculations. Such calculations, however, are in principle possible
on the basis of the results presented in this paper.

2 The ambiguities appear in the definitions of the generators of the unitary transformation which
eliminate the odd terms in subsequent order of approximation from the Hamiltonian. However, it has been
shown by Pursey [16] that these ambiguities have no deeper physical meaning. The Foldy-Wouthuysen
iteration procedure has then been made unambiguous by Eriksen [17].
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APPENDIX A

As the starting point of many considerations on many-Dirac particle system (in partic-
ular two particle system) one can regard the Hamiltonian expressed in the product space
of these particles. The Hamiltonian one starts with has the form:

H® = H{+H}, (A.D)
HR = Qs,xmxcz‘*‘cm,xﬂ'x * Pk- (A

The external magnetic field expressed in terms of the potentials AY and &F is introduced
by the well-known correspondence method

e €x
Px = Px— -f AY,  Ex - Ex—e 3. (A3)

On the other hand the term which describes the interactions between the particles must be
justified by means of arguments from outside the formalism of quantum mechanics, but
it is finally presented as effective energy which depends on the dynamic variables of the
particle only. Such roleis played by the Breit and the Bethe-Salpeter operators which des-
cribe the interaction between the particles. In case of absence of electromagnetic field
we have

HY = HY+HY+V, HSs=H’+H5+W° (AD)

i. e. the well-known Breit and Bethe-Salpeter Hamiltonians, respectively, the latter in the form
proposed by Barker and Glover [6]. In case of the Breit operator there is no difficulty in taking
into account the interaction of the particles and the influence of the magnetic field since V'
is independent of the momenta of the particles. This is different in case of the Bethe-
-Salpeter interaction W°. In contrast to ¥, W° cannot be treated as effective potential
energy which depends on the coordinates of the particles only since it also depends on
their momenta via the operators A3. Unambiguous generalization requires some additional
assumptions which fix the sequence of introducing the external field and the interaction
W? into the Hamiltonian (A.1). A more consequent procedure seems to be the introduc-
tion of the potentials of the external field into the Hamiltonian which already contains
the mutual interaction between the particles. The proper way of generalizing the shapes
of the operators appearing in WP° is the analysis of the generalized Case transforma-
tion which brings the operator

I = (Qs,xmKCZ'FCQLKZx) [(Q3,KmKCZ+CQI,KZK)2]~& (A.5)

into the operator g; g, analogously as was the case with the Foldy-Wouthuysen transfor-
mation in case of the operator A7. The operator Ay depends on the external magnetic
field. In the presence of electric field it is not a constant of motion but, having the eigen-
values +1 and thus representing the sign of the kinetic energy, it can be regarded as a natural
generalization of the operator Ay. Hence we obtain immediately the generalized Bethe-
-Salpeter Hamiltonian given by Eq. (7). The wave equation which contains the Hamiltonian
is invariant with respect to the gauge transformation which fact distinguishes the postul-
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ated form of the Hamiltonian in comparison with those resulting from eventual others
attempts of generalizing the operator W° (e. g. by putting W° = W which would cor-
respond to the reversed order of introducing the external field and mutual interaction).

Since the dynamic variables of the particles are independent, the gauge transformation
of the field can be written in the form (¢f. Kramers [18], p. 2)

10
AT o> AT +gradg fy, OF - T — : Uft" (A.6)
i
Y > ¥-exp <§_c E efo> , (A7)
K
where
% = flrg, 1). (A.8)

Hence the condition [Jf = 0 imposed on arbitrary function f implies analogous conditions
for fx (which are defined by Eq. (A.8))

Ok fi = 0. (A.9)

1t is interesting to note that the Case transformation is gauge invariant. This follows imme-
diately from the fact that S given by Eq. (2)is expressed by the operator zx (Eq. (6) which
is invariant.

APPENDIX B

There is a possibility of presenting the Breit Hamiltonian as the sum of two formally
single-particle terms

H® = Hi+H,, Hy= Qs,Kmxcz'*'C@l,KEK‘*‘eKajK (B.1)
where
~ €k -~ ~ S|
ZK = O'K pK_ :AK N d)K = QK + 5¢K,L5 (B.Z)
g ex 1 4 €L '
A = AK -+ “z‘AK'L, ¢K,L = — (B3)
r
” e, (o (o, t)r .
Agr = 01,1 g’l— + - 3 } = 01,19k, (B.4
r r

In reality Hy is the operator of the effective energy of the K th particle. This energy comprises
both the influence of the external field and also a half of the interaction with the other
L th particle. Both contributions are expressed in terms of “effective potentials” @y and
Ay. AAK,L can be regarded as the operator generalization of the vector potential. Such
interpretation is suggested by the analogy based on the correspondence principle between
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the magnetic interaction expressed in the form

1 .
-5 Z N f" (cay) {CGL r______(ca; ')}, (B.5)
K,L

and the classical expression for the energy of the current 7 in the magnetic field described
by the potential A.

1
= — 5 |raw)ar. (B.6)

As it can be easily checked the expression (B.6) can be formally brought to (B.5) if the
classical quantities 4 and y are replaced by the operators AK 1. and

.}.K = excagd(rg—r') (B.7)

which corresponds to the acceptance of the Dirac velocity operator of the particle cog,
and 6(rg—r’) is the three-dimensional Dirac Jd-function.

Animportant role in the calculations made in Section 2 is played by the operators ay ;.
which are defined by the operator equation

def

] (B.8)

Ggag,. =

€L
4m,c
After calculating the anticommutator and separating the factor gx we obtain

~ eL

N 1 1 oLXr
gL = —— PL+PL +(PL ") 3t 3 (" “p)E2h — (B.9)
4m;c r

or, in a less symmetric form

by = {lpL-t- 5 (r p)xh ”Lx’}. (B.10)
2myc {r r

It can beseen from these formulas that the operators &K,L are connected with the classical
expressions for the vector potential through the correspondence principle, this time how-
ever, for the magnetic field produced by the motion of the particle with the velocity py/m;
and the proper magnetic moment e ha,/2m; c. This is a nonrelativisic relation. As it can
be easily checked

divgdy . = divgag., = 0. (B.11)

The analysis of the shape of HS (Eqgs (12) and (35)) suggests still another remark concerning
the circumstances which could be responsible for the appearance of the controversial even
term ~ e*, which expresses the effect of the admixture of states in the earlier methods of
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reduction of the Breit equation. A part of the terms in Hg can be presented in the form:

pK 1 1. 1 e2
03,k + - PK+01L PKL+03L PKL — Z(A )+
2my 23 Ymye

[4 N
oL —— ay, LA“} (B.12)
m C

L
If we add and subtract a term of analogous structure as the controversial term ~ e*,
then this expression can be supplemented to the square

1 e e e 2
03,k ok * PK_#KA;(X_QLL—E Q3L—KaKL +
2my mg c c 2c
2

ﬁ‘f’“ .121 (B.13)
8mKL I

3 ) .

=2 {— o () lon ')}. (B.14)
r r? ¥

The above considerations shed some light on the role of the term containing J2. This is

. - . e A .
an even term but it is closely connected with the odd operator ¢ 1_L—K oy * Gy, appearing
e

in (B.13), which, after being squared has lost its odd character, although it continues to
eapress the correction due to the admixture of negative energy states.

This example shows that there is a possibility of the appearance of such terms in
methods of reduction based on the procedure of formal elimination of odd terms whenever
these methods do not take into account the origin and the physical meaning of such terms.
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