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It is shown that the field equations of the nonsymmetric unified field theory imply
equations of motion of a charged test particle with an electromagnetic force term. This
result is contingent on the electromagnetic field tensor being suitably expressed in terms
of the fundamental tensor. A conjecture of Wyman on the boundary conditions is adopted,
and it is shown that to the required order of approximation the electromagnetic force cons-
ists of a Lorentz term together with a small correction term, linearly dependent on distance
and similar to the Hubble law of cosmic repulsion. It is thus very different from the correc-
tions previously contemplated (Treder 1957). These results remove a major objection to
Einstein’s unified field theory. The appearance of what is essentially a correction term to
a Coulomb field, is a firm prediction of the theory, capable in principle of an empirical verifica-
tion.

1. Introduction

Perhaps the most severe criticism of Einstein’s nonsymmetric unified field theory
(1954) arises from the claim that its field equations do not seem to imply what is thought
to be the correct equations of motion of a charged test particle. On the other hand, Ein-
stein, Infeld and Hoffman (1938, abbreviated by EIH in the sequel) showed that the
general relativistic field equations require a test body (an uncharged, gravitating particle)
moving on a geodesic of the space-time manifold. This result is regarded as a consequence
of the non-linearity of the field equations and should therefore be implied also in every
attempt to extend general relativity to include, alongside the gravitational, a geometrical
description of the electromagnetic field.

Except for some variations which will be mentioned below, there are two alternative
sets of the non-symmetric field equations. We have first the so-called weak field equations

gu viA = guv,).—gdvF:A_guargv = 0’
+—

r,, =0,
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R, =0, (1.1)
Ruv,l = 0,

where g,, is a non-symmetric fundamental tensor which replaces the metric tensor of ge-
neral relativity, I’ ﬁ‘, denotes the components of an affine connection and R,, is the Ricci
tensor formed from I'Z, and its first derivatives. As usual, a comma represents partial
differentiation while a line and a hook under a pair of indices denote symmetry and skew-
-symmetry respectively and the dots indicate a cyclic sum. The Greek indices range over
0, 1, 2, 3. Secondly, there are the strong field equations (which, unlike the set (1.1), have
not been derived from a variational principle) which are obtained by replacing the last
two of (1.1)

R,, = 0. (1.2)

The method of EIH of deriving the equations of motion consists of expanding g,, (which,
in their case, was of course the ordinary metric tensor) in a power series of a small para-
meter ¢ (say). Using this method and identifying g,, with the electromagnetic field tensor

fo» Infeld (1950), Ikeda (1952) and Callaway (1953) ‘showed that both the strong and weak
field equations imply equations of motion which are independent of electromagnetic
terms up to the fourth order in & The same result holds for an alternative interpretation
proposed by Hlavaty (1957) where a certain linear combination of the components g,,
is identified with f,,. In other words, it seems to be impossible to derive the Lorentz force
on a charged particle moving in an electromagnetic field, directly from the unified field
equations. On the other hand, Infeld and Wallace (1940) showed that the general relativ-
istic, Einstein-Maxwell theory does imply the Lorentz equations of motion.

The purpose of the present article is to show that the reason why the equations of
motion do not follow from the field equations in Einstein’s theory is due to the way in
which the electromagnetic field is identified. It will be shown that there exists an alternative
expression for the field tensor for which it is possible to derive the equations of motion of
a charged test particle. In this expression a Lorentz force term appears in a modified
form. The modification {essentially to the Coulomb, inverse square law of electrostatic
attraction or repulsion) appears to be related to a cosmological force familiar in a de Sitter
universe.

Our correction is different in principle from that of Treder (1957) who showed that
an electromagnetic force term follows from the field equations if the current density
vector is identified in a special way. He arrived at a potential of the form

a
¢ = +b+cer+dr?, a, b, ¢, d const.,
r

but rejected the case d # 0 on the grounds that it would give an increasing (with r) field.
We shall find that this is an unnecessary restriction. In any case, our stasting point is
quite different since it is the field tensor itself which is re-defined. It should be pointed out
that our function @ is not the electrostatic potential.

The authors wish to express their gratitude to Professor K. E. Bullen, F. R. S., for
a critical reading of the manuscript.
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2. The equations of motion

Let *g"l denote the tensorial inverse of g,,. Then, providing the skew-symmetric part
of g,, is calculated before taking covariant derivatives, we can write

fuv = k*gaﬁguvv ;x> (21)
+ —

where k is some constant. (The two operations do not commute, since by the first of (1.1)

gu viaf == 0)
42

The particular form of f,,, has been used by us (Russell and Klotz 1972) to solve the problem
raised by a theorem of Tiwari and Pant (1970) that, in the standard interpretation of f,,,
there can be no solutions of the weak field equations corresponding to an isolated electro-~
static charge. Herein, however, we are interested primarily in the equations of motion.

We shall follow, almost exactly, the method of Infeld (1950), and note for the sake
of reference a number of results obtained in this work. In particular, we consider only the
approximation to the equations of motion up to the fourth order in &. We assume, with
Infeld, that g,, can be expanded in the series

3 5
8ot = é3g01+(85gol+"')7
2 4

.2 4
Emn = & gmn+8 gmn'*'“-a

where Latin subscripts range over 1, 2, 3. The weak field equations (1.1) then give
2

ng,S = O’ (2'2)

and
2

(gf,k' l),ss = O (23)

According to (2.1), we now have, to the second order,
2 2

Son = K @4

Suppose now that the field is due to a number of sources. As in general relativity, the
equations of motion of the k™ source are given by

w k
Y et =0, (2.5

i=1i

where

k
—2nc, = | An*dS. (2.6)
=

1
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In (2.6), n* is the unit outward normal to the surface S surrounding the k" source, and

4mk = RL"k+ % 5mkRoo_ é— 5mkRss' (27)

i

We assume also that guv gives the metric of the space-time manifold (that is, the
gravitational potentials), at least to the second order in e. Actually, there is no evidence
to suggest that this should not be the case exactly, to all orders in &. Since to the second
order, the ficld equations separate into purely gravitational and purely electromagnetic
parts, it follows that we need consider only the electromagnetic correction to the EIH
equations

k

~2nc,, = | A,n*dS, (2.8)
4 S 4
where
A;nk = Rmk*Pmk+ % 6mn(Roo_Poo)_ % 5mk(Rss_“Pss); (29)
4 4 4 4 4 4 4
P,, is the Ricci tensor of Riemannian geometry with guv as the metric tensor, and so is

necessarily symmetric.
Infeld has shown that

2 2 2 2 2 2
Rmk - Pmk = [gms(Inps_ gnp,s) =+ gsn(Ipms_ gpm,s)],p—
4 4 v e v v
2 2 2 2 2 2
- % {[gs\?(Ipms - gp:n,s)],n + [g?(lpns - gen.s)],m} -
2 2 2 2
—(Imts_' grtl't,s) (Ismt_“gin,t% (210)
where
Iabc = % gae,w (2'11)
and that
R,,—P,, = 0. 2.12)
4 4

We can now apply these results to the problem of determining explicitly the equations of
a charged test particle. For the sake of simplicity, we shall discuss a two-body problem
only.
3. The two-body problem
Since we are concerned only with a weak (fourth order) approximation, the sources

must be regarded as essentially at rest (that is, we cannot expect to get the 5U/\B part
c =

of the Lorentz force). Consequently we consider fields far from the sources. Furthermore,
the latter may be either singularities in the field (as in Callaway’s work), or may be de-
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scribed by singularity free solutions of the field equations, possessing some symmetry about
the source and reducing to the classical fields away from it. This has been discussed by
Infeld.

2 2
Let f,, and f,, be the electromagnetic fields due to the first and to the second source
1 2

respectively, so that
2 2 2
j:nv =fnv+ vy
1 2
and let us write

2 4
m=em+etm+...

for the mass of either source, and

2 4
e = gle+ge,

for either charge.
Then, classically, the electrostatic potential far from the two sources is approxi-
mately given by
2 2
e;+e
g2 3.1
r
and
2

fyvagnvz(p,a = &uva¥,a

where g,,; is a 3-index permutation symbol.
It follows from the equation (2.5) that

2

an.ss = amna(p,a‘ (3‘2)
Let us define a function @, by the equation
¢,ss = @ (33)
so that we may take
2
gmfl = 8mna¢,a' (3'4)

Since ¢ is a harmonic function, and ¢, is completely skew-symmetric in all its indices,
the expression (3.4) satisfies the equations (3.2) as well as (2.2) and (2.3).
The only non-trivial component of I, (2.11) is now

e 1 _
Iios = 5 (6124930 8230D, 10 €312, 20) =

— 3
=29
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and hence, by (2.8),
A;m = = %.‘ 5mn§02+ % (P,m@,,,*f- % @,n@,m+ % 6mn<p,a¢»a -
4

- ¢,ma¢, na Q,ad),amn - emsagnptdj,ap(p,sr +

+ 5mn¢,ab¢,ab =

=F

mnp,p~ Smm

where

anp= ~F =

mpn
= - Smsagnpt(p,ad},st - 5pm¢,an(p,a +

+ 5mn¢,ap¢,a+ % émp(p,n(p - % 5mn¢,p¢’
and

1

Smn =13 5mn(p2~ 'é' (p,m¢,n+ % (p,mu(p'
An elementary calculation shows that
Smnn = 03

hence the surface integral (2.7) does not depend on the shape of the surface surrounding
the source. Further, unlike in the work of Infeld and Callaway, the extra terms

1 k
2_7'5 Smkn das
do not vanish.
The general solution for the bi-harmonic function & is
2

i 2 2 2
2 Ca€; .
b = cier° +c e+ cie+ , i=1,2,... (3.5
r

where ¢, is a non-zero constant and ¢,, ¢ and ¢, are arbitrary constants.
To simplify the notation, let the two particles have charges e¢; and e, and be located
at the points & and 5° respectively. Further, if x* is a field point, let

xa_ éa —_ Ra’
a a

xa—'l =0,

and let us consider the equations of motion of the first particle. We surround it by a sphere
of radius R, and retain only those terms of S, which are of order R~2, since all the other
terms lead to terms in the final equation which depend‘on ihe size of the sphere, whilst
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we know the final result to be independent of it. We then allow the sphere to shrink to
zero radius in the usual way, to yield the equations of motion.
Now,

= cie,R? +c1e,0° +ce,R+cre0+

2 2 2 2
-1 -1
+eseyHeaertee R0 7,

so that the only surviving terms are

22 m 22 ,k pm 22 k m
2cceeo"R*—+c2ee9R- ccee——g R—
1€2€1€20 3 2 €163 — —C€al4€4 €, -
R QRS Q3R3
22 m k 2 mpk
R 2RR

2
—‘CZC4ele2 A = +4C2 el T
93 R3 R4

Integrals of these functions have been considered in EIH, and need not be discussed here.
The final result is that the equations of motion take the form

22 2 2 gm0 g 22 1 22 0" 2 22 gm
m " mim, =3 = - €1C26,€,0" + — ¢r%ese; T~ — ~cpcueie; 5,
e’ 3 6 e 3 e
or, in vector form, if r is the position vector of the first particle relative to an origin which

coincides instantaneously with the second,

d’r  mm,. 1 1, 2
r = eecicr+ S cy)r— 3 €1€C2Cy -

—_— 3.
di? * r? 3 2 r (3:6)

r
2

my
(the gravitational constant being taken as unity).

4. A new law of motion

So far we have refrained from specifying the units in which e, and e, are to be meas-
ured. However, if we take these as electrostatic then it necessarily follows that

Crce = —3. @.1)

Further information about the constants ¢; can be gathered from dimensional considera-
tions. In fact, let ro be a fundamental length constant. Then, equations (3.5), (3.6) and

(4.1) enable us to write
¢y = C5r629

. — ~1
€y = CgFps
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and

since ¢, 1S non-zero.
The radial component of the electrostatic force in (3.6), now takes the form

e, e1e2c5c6( Ce
S22 A S ). 42
r? 3rg  \ 2cs 0) (4.2)

This form contains a classical Coulomb term together with a new non-Lorentz force term
linearly dependent on r. The non-Lorentz term cannot be removed by any choice of the
constants since neither ry nor ¢, can vanish and the case ¢s = 0 leads to an unrealistic
physical situation. We must conclude, nevertheless, that the non-Lorentz term is too small
to be detected by the resolving power of present day apparatus. We shall identify rg,
tentatively, with the radius of a finite universe. The non-Lorentz force then acquires the
character of a cosmological term.

The assumption that at any given time there exists a finite, limiting radius of the
universe enables us to re-introduce Wyman’s conjecture (1950) that the boundary condi-
tions to be imposed on the solutions of the unified field equations should be the so-called
strong boundary conditions. In a spherical polar coordinate system, this takes the form

g,3cosecd - 0 4.3)

as r becomes large.

In our case
2

r P2 31,
823 cosec ) = e 2¢5 — +cg — + - —
5 ro 2 ¢g
whence we conclude that (as r — ry),
2c5c6+CE+ 3 =0. (4‘4')

We obtain an “‘expanding universe” term in (4.2) if we put

Ce . .
— = —4, 0O0<i<l (4.5)
2¢5
so that (4.2) becomes
€€ €€ J
+ 4.6
r? 41— Mry K=y Hro= " (

5. Discussion

The arguments of the. previous section may well be conjectural but the basic results
of this article are not. What we claim to have shown is that Einstein’s non-symmetric
theory is an unexceptionable approach to the problem of a complete geometrisation of
the gravitational and electromagnetic fields. Above all, we have demonstrated that, with
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suitable geometrical identification of the latter, equations of motion which allow for an
electromagnetic interaction can be derived from the field equations of the theory. Secondly,
we have found a correction to the Lorentz force, or rather, because of the essentially
static character of our model, to the Coulomb law. A result such as this can, in principle,
be verified empirically, tecause it represents a definite prediction.

Original failure to derive the appropriate equations of motion led to several attempts
to reformulate radically the unified field theory. Thus, identifying

8y = fuws (5.1
Bonnor (1954) suggested using a Hamiltonian
H = K+ =g [, (5.2)

where p is an arbitrary constant, g = det (g,,), and " is the Hamiltonian of Einstein’s
theory. This suggestion led to a Lorentz force in the equations of motion. Similarly,
Stephenson and Kilmister (1953) and one of us (Klotz 1959 and 1967) effectively took
the equations of motion as a fundamental postulate of unified field theory and constructed
field equations to fit them. The difficulty of these theories, apart from their arbitrariness,
is that they abandon a priori all hope of experimental verification, at least on the basis of
the classical electromagnetic field laws. The present work shows that such theories are
completely unnecessary.

Another point which must be mentioned is an apparent discrepancy between (4.6) and
a result previously obtained by the present authors. Using our interpretation of Einstein’s
geometry, we showed (1972) that the well-known, particular solution of Einstein’s field
equations, due to Papapetrou (1948), leads to a correction in the Coulomb field of the

form
e 2m
E=7<1——>? (5.3)

r r

where e and m are the charge and mass of the source. In fact, this form of the electrostatic
law gives a (small) constant, radial Lorentz force in the equations of motion. (This is
essentially Treder’s case). In order to obtain (4.6) a harmonic term (indeed, of the form
of a Green’s function) must be added. The apparent discrepancy (5.3) only demonstrates
the particular nature of Papapetrou’s solution.

Finally, we should mention reformulations of the theory discussed in this article due
to Einstein and Kaufman (1955) and also studied by one of us (Klotz 1970 and 1972).
These theories are perhaps more comprehensive, and philosophically more pleasing than
the unification based on the field equations (1.1). Their existence, however, does not
invalidate our conclusions. The now resolved objection concerning equations of motion
applied to them just as it applied to Einstein’s theory. Detailed study of the consequences
of the new proposals is now in progress.

It may be of some interest to point out, in conclusion, formal similarity of the non-
-Lorentz term in (4.6) and the Hubble law of cosmic repulsion as obtained from a de Sitter
model of the universe.
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