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STUDYING THERMODYNAMICSIN HEAVY ION COLLISIONS�A. Bialas, W. Czyz and J. WosiekM.Smoluhowski Institute of Physis, Jagellonian University, CraowReymonta 4, 30-059 Kraków, Polande-mail: wosiek�thris.if.uj.edu.pl(Reeived September 21, 1998)We disuss the possibility of measuring entropy of the system reated inheavy ion ollisions using the Ma oinidene method. The same methodan also be used to test whether the system in question is in a state ofequilibrium.PACS numbers: 13.85.Hd, 24.10.Pa1. IntrodutionThe assumption of thermodynami equilibrium is one of the most om-monly used when disussing the system reated in entral ollisions of tworelativisti nulei. It is by no means obvious, however, that the equilibrationatually an be ahieved, sine it is reognized as a proess whih may takelonger time than the life time of the system in question. Be it or not, it isertainly important to verify if the reated system is indeed in thermal equi-librium. To test this, one may try to hek if the various measured quantitiesdo satisfy relations following from thermodynamis. In the present note wedisuss the possibility of testing the relation [1℄�S(E;n)�E ����n = 1T ; (1)whih should be valid in any system at thermal equilibrium. On the otherhand the very fat of whether our system is in equilibrium an be testedwithout heking thermodynami relations, as we shall argue below.Testing (1) requires measurement of the temperature T , the energy E,the number of partiles n and the entropy S of the system in question. It is� This work is supported in part by the Polish Committee for Sienti� Researh underthe grants no. 2P03B 08614 and 2P03B 04412.(107)



108 A. Bialas, W. Czyz, J. Wosieklear that by measuring the energies of the partiles reated in the ollisionwe an measure the energy of the system. It is also generally aepted thatby measuring the slope in the transverse momentum distribution we anmeasure the temperature1. The real di�ulty is the measurement of entropy.In the present note we propose to adapt to this end the oinidene methodproposed some time ago by Ma [2℄. One of the very attrative features ofthis method is the possibility of testing whether the system is in equilibriumthrough a proedure of resaling of the measured entropy. We also presentMonte Carlo estimates of the feasibility of the method, based on a simplemodel. We onlude that the method has a large potential, as it requiresmuh smaller number of events (� pno: of states), than the onventionalapproah. As a onsequene its errors are signi�antly redued ompared tothe simple-minded estimates. It is ertainly worth to try it in the presentand future high energy experiments.2. Measurement of entropy by the oinidene methodBelow we give a summary of the idea presented in [2℄.Ma proposes to ount the pairs of on�gurations of the investigated sys-tem. Call N the number of pairs of �idential� on�gurations. Call Nt thetotal number of pairs of on�gurations. If all on�gurations onsidered are�equivalent� (i.e. if they orrespond to the same onditions), then entropyis given by the formula (we give the subsript M to the entropy measuredthrough the proedure of Ma)S = SM = log�NtN� : (2)The reason is that NtN is the volume in the phase-spae oupied by thesystem. This an be seen as follows.Suppose that the phase-spae is divided into ells. Suppose furthermorethat our system oupies � ells (with a uniform probability). Eah ellrepresents a di�erent state of the system (eah ell has as many dimensionsas is the number of variables desribing the system). Our problem is toalulate � : S = log(� ). Let us selet randomly N on�gurations of thesystem (in general N � � , that's the main point). These on�gurationsoupy some ells. The average oupation number of a ell is N=� � 1.Under this ondition, the average number of pairs in the same ell is�N� �2 � Nt� 2 ; (3)1 This requires orretion to the e�ets of the hydrodynami �ow whih seem to beunder a reasonable ontrol.



Studying Thermodynamis in Heavy Ion Collisions 109where Nt � N 2 is the total number of pairs seleted. The total number ofoinidenes is the sum of (3) over all ellsN = � �N� �2 ; (4)hene � = NtN ; (5)and thus (2)2.If the on�gurations are not equivalent, one has to divide them intolasses: within eah lass they are now equivalent. If the probability distri-bution of lasses is P (�), thenSM =X� P (�) log� Nt(�)N(�)P (�)� : (6)The derivation is given in [2℄ but it an be easily understood as a sum ofthe �average over lasses� =P� P (�) log �Nt(�)N(�)� and of the �entropy of thedistribution of lasses� = �P� P (�) log[P (�)℄.The lasses annot be too small, so that number of on�gurations in eahlass is su�ient to obtain a reasonable statistis.This is what we retain from Ma. In the next setion we present a sug-gestion how to apply this method to measure the entropy of a system ofpartiles produed in high energy interations, and how, through a resalingproedure, to test that they ome from a system in equilibrium.3. Appliation of oinidene method to multipartile produtionA natural possibility to apply the oinidene method to multipartileprodution is to identify the on�gurations of the statistial system produedin a ollision, with the events observed in experiment. One this is aepted,one an proeed as follows.(a) Selet N events and split them into lasses aording to the total trans-verse energy E and multipliity n reorded. The number of events ineah lass is denoted by N (E;n).(b) De�ne a �lattie� in momentum spae of individual partiles 3.2 The formula (3) is only approximate. The exat formula is N� N�1� whih leads againto (5).3 Perhaps a better method is to transform the momenta into variables whih giveuniform distributions (see e.g. [3℄).



110 A. Bialas, W. Czyz, J. WosiekWithin eah lass:(i) Call the two on�gurations �idential� if they have the same oupationnumbers within the auray of the grid. The number of suh pairs isdenoted by N(E;n).(ii) Calulate the ratio (6), i.e.,SM(E;n) = log�Nt(E;n)N(E;n)� = log�N (E;n)(N (E;n) � 1)N(E;n) � ; (7)where N (E;n) is the number of events in a given lass.Atually, the ondition that the events in one �equivalene lass� musthave stritly the same multipliity (otherwise they ould never be reallyidential) ould be relaxed, e.g. by aepting that in the de�nition of the�identity� of the two on�gurations, the oupation numbers may di�er bya �xed small amount.One sees from these arguments that in this way one an measure theentropy only up to an additive onstant. Therefore the interesting thing isnot to measure the absolute value of entropy but rather its dependene onenergy and/or multipliity.As we already noted in the Introdution, the measurement desribed by(7) allows one to perform a simple test of thermalization. When thermody-namis is valid, then the Eqs.(1,20) should be satis�ed. Clearly the additiveonstant is irrelevant. One needs, however, a rather preise measurementsbeause otherwise the numerial estimates of the derivatives �SM(E;n)�E and�SM(E;n)�n are not reliable.The very fat of thermalization an also be tested without reourse tothe validity of (1) or (20). Indeed, the method of Ma derives the expression(2) for entropy under the assumption of omplete randomness of the system.When a system is in a state of equilibrium it has random distributions. Theentropy, SM, on the other hand, has the saling propertySM = log(� ) = log�
� � = log
 + log� 1�� ;where � is a dimensionless quantity, 
 is a volume in the phase spae and� the volume of the elementary ell. Therefore, we an test the randomness(hene the equilibrium) of the anlyzed system as follows:



Studying Thermodynamis in Heavy Ion Collisions 111� We plot the measured entropy SM(�) versus log � 1��.� When our system is in equilibrium we �nd this dependene to be linear4and its slope equal 1.Note that testing only the equilibrium is redued to testing randomness,thus it is not important whether we get an aurate value of the entropy.Measuring entropy is a more demanding task than testing an equilibrium.In the next setion we show the results of a simple Monte Carlo (MC)estimate of the auraies one an ahieve.4. The lassial gas of idential partilesOf ourse the main problem is for how big systems the oinidenemethod works in pratie. The number of states grows exponentially withthe number of partiles and the number of subdivisions. Therefore obviouslythere is a limit to what one an ahieve with the �nite sample of events. Inthis setion we analyse this question using MC simulations of a lassial gasof noninterating partiles. In partiular, it is shown that the onset of thethermodynami behaviour ours soon enough for the oinidene methodto be pratially feasible.We will also determine the minimal size of the system for the ontinuumbehaviour to set in as the problem is not really interesting for too smallnumber of subdivisions of the system.We onsider the lassial gas of noninteraing, nonrelativisti partilesin d dimensions. Sine, as mentioned earlier, the method may be appliedto the transverse degrees of freedom only we prefer to retain the disussionin arbitrary dimensions. For the same reason we use the number of degreesof freedom N to haraterize the size of a system. Of ourse N = nd in ddimensions 5.Sine for noninterating partiles momentum and spae degrees of free-dom fatorize, we onsider for simpliity only the momentum states. Thedisretized expression for the number of states of N degrees of freedom withthe total energy E reads� (M;N) = Xn1;:::nN ;n21+:::n2N=M 1 ; (8)where the momentum pi = ani with some disretization sale a. Aordingly2mE = a2M , where the integer M labels the energy of the system and mdenotes the mass of a partile.4 When � approahes 1=V , where V is the volume of the system, the e�ets of quantuminterferene between idential partiles [4℄ may disturb this simple behavior.5 Provided only the momentum degrees of freedom are onsidered.



112 A. Bialas, W. Czyz, J. WosiekThe generating funtionZN (�) = 1XM=0 �M� (M;N) =  1Xn=�1 �n2!N = exp (N log (�)) ; (9)fatorizes and is expressed by a single sum (�). The oe�ients � annow be simply obtained by alulating reursively expansion of the f(�) =log (�) from that of (�), and subsequently expansion of ZN (�) from thatof f(�). This proedure provided us with the exat numbers for the densityof states � (M;N), whih were used to benhmark the performane of ourMonte Carlo.For large M and N the density of states reahes its ontinuum limit� (M;N) �= �N=2M (N=2�1)(N=2 � 1)! ; M;N large : (10)We will see later that this relation is rather well satis�ed even for moderatevalues of M and N .On the other hand, the thermodynami limit, M;N !1;M=N -�xed, isreahed rather slowly. In this limit the entropy density 6 sales dependingonly on the energy density " = M=N .1N log � (M;N) �= 12[log (") + log (2�) + 1℄; M;N !1; " = M=N = onst:(11)The purpose of this exerise is to see whether the oinidene method andetet this behaviour. 4.1. Monte Carlo simulationsIn priniple one should generate a sample of the N on�gurationsfn1; n2; : : : ; nNgk, k = 1; :::;N of, integer-valued, one-dimensional momentan1; : : : ; nN , whih satisfy the energy onservation. For our purpose, how-ever, the details of partile kinematis, although pratially umbersome,are not relevant. In order to measure the oinidenes, it is enough to labeluniquely all multipartile states and ompare the labels. In this way theproblem simpli�es onsiderably, yet the essential question of the onset ofthe thermodynami behaviour an be addressed.Consequently eah Monte Carlo run onsisted of a generation of a sampleof N on�gurations, represented by integer indies, (I1; I2; : : :; IN ); 1 � Ik �� (M;N); k = 1; : : : ;N , uniformly distributed in the whole spae of available6 Here and in the following, we will refer to the entropy per one degree of freedom asthe entropy density.



Studying Thermodynamis in Heavy Ion Collisions 113states. Then we ounted the number of oinidenes N̂, i.e., the number ofpairs (Ij ; Ik) suh that Ij = Ik. The estimate for the number of all states isthen �̂ = N (N � 1)=N̂: (12)Moreover assuming the multinomial distribution of N integers among �bins we have alulated also the higher moments of the distribution of thenumber of oinidenies N. In partiular, the dispersion of N reads 7�2[N℄ = 2 < N >= 2N 2� ; (13)whih gives for the relative error of the determination of � after N trialsp�2[� ℄� = p2�N : (14)Therefore the estimate of the error, based on the MC data only, is�̂[� ℄=�̂ =q2=N̂: (15)Eqs. (12), (14) show diretly another advantage of the oinidene method.Namely, it works for muh smaller number of trials (� p� ) than the stan-dard approah whih measures average oupation of a single state.A sample of runs is summarized in Table I. Exat results for � (M;N)are also quoted. The last olumn gives the relative deviation of the urrentestimate (ol. 5) from the exat value. It should be ompared with theestimate of the error based only on the Monte Carlo data, Eq. (15), givenin olumn 6. The estimated error is steadily dereasing like 1=N and atualdeviation follows the suit albeit with some �utuations. In all runs we havemade (about 20 times more than shown in the Table) approximalety 30%of atual deviations were bigger that the MC estimate, as they should. Ofourse the formula (14) is essential for planning future Monte Carlo simula-tions. It is interesting to note that the errors derease as a number of trialsand not as 1=pN . This is beause the true random variable in this problemis the number of pairs, i.e. N 2. In partiular the omputing e�ort (ountingpairs) grows like N 2, and onsequently the square root of the omputationale�ort determines derease of errors as it should. Altogether the Monte Carloresults are well under ontol and show that the method is quite reliable. Itis however pratial only if the total number of states is less than severalhundred milions. The last run shown in Table I lasted few hours on a 200MHz PC. This translates into N;M �� 25. We will disuss now if this issu�ient to see the onset of thermodynami properties.7 After some approximations valid for 1� N � �



114 A. Bialas, W. Czyz, J. Wosiek TABLE IMonte Carlo results for ^� (M;N) (ol.5) for di�erent N and M . The third andfourth olumn give the number of generated on�gurations N , and the numberof observed oinidenes N̂. In the last two olumns we quote the Monte Carloestimate of the relative error, f. Eq. (15), and the atual relative deviation Æ=� =j�̂ � � j=� from the exat value � also quoted in the Table.N M N N̂ �̂ �̂=�̂ Æ=�4 000 218 73 376. 0.096 0.1408 000 1000 63 299. 0.045 0.0076 16 000 3866 66 214. 0.023 0.02832 000 15884 64 465. 0.011 0.001� 64 4168 000 30 2 133 067. 0.260 0.10016 000 124 2 064 387. 0.127 0.06512 12 32 000 516 1 984 434. 0.062 0.02464 000 2 110 1 941 201. 0.031 0.001128 000 8 358 1 960 262. 0.015 0.011� 1 938 33620 000 4 99 995 000. 0.707 0.61540 000 16 99 997 504. 0.354 0.61524 80 000 106 60 376 604. 0.137 0.025160 000 422 60 663 128. 0.069 0.020320 000 1596 64 160 200. 0.035 0.036� 61 903 7768 000 8 7 999 000. 0.500 0.07716 000 30 8 532 800. 0.258 0.0156 32 000 132 7 757 334. 0.123 0.10564 000 442 9 266 824. 0.067 0.070128 000 1842 8 894 610. 0.033 0.02724 � 8 667 72040 000 16 99 997 504. 0.354 0.48780 000 32 199 997 504. 0.250 0.0258 160 000 122 209 834 752. 0.128 0.076320 000 510 200 783 680. 0.063 0.029� 195 082 3204.2. ResultsFigure 1 shows the entropy density as a funtion of a saling variable" = M=N . Statistial errors of MC results (and the deviation from theexat disrete values given by � (M;N)) are muh smaller that the sizeof symbols. The data follow niely the urves obtained from the lassialformula in the ontinuum, Eq. (10). Considered as a funtion of " and N theyobviously show a substantial N -dependene. The N varies from 8 (lowest



Studying Thermodynamis in Heavy Ion Collisions 115urve) to 24 in this plot. On the other hand, the deviation from the ultimatesaling limit, (Eq. (11), the uppermost urve), is around 30% in the worstase (N=8,M=30). With N starting from 12, deviations from the in�nitesystem are smaller than 20%. Note that N denotes the number of degreesof freedom, whih in d spae dimensions orresponds to N=d partiles.
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Fig. 1. Entropy density s = 1N log� (M;N) vs. the energy density " = M=N .Blak symbols represent our Monte Carlo results for N=8 (diamonds), 12 (irles),16 (boxes) and 24 (a triangle). Lower solid lines orrespond to the ontinuumapproximation, Eq. (10), for eah N . The uppermost solid line represents thesaling, thermodynamial limit, Eq. (11).As a seond test we have heked a di�erential form of Eq. (11)� log ��E = N2E ; (16)whih, together with the equipartition of energy, is the basis of the equilib-rium thermodynamis 1. Changing the variable 2mE = a2M gives� log��E = � log ��M dMdE = � log ��M ME = N2E ; (17)or � log ��M = N2M ; (18)Finally after disretization of the derivative we obtainlog�� (M + 1; N)� (M;N) � = N2M + 1 : (19)This equation is tested in Fig. 2, where a half of the inverse of the left handside, as obtained from simulations, is plotted as a funtion of ". Solid line



116 A. Bialas, W. Czyz, J. Wosiekrepresents the right hand side 8. Similarly to the previous ase agreement isvery good for N � 12. It was neessary to redue MC errors to the level of1%-3% in order to ahieve this agreement. Of ouse this test is muh moresensitive than the previous one sine it requires preise measurement of thederivatives.
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Fig. 2. Testing the relation (19). Half of the inverse of the �nite di�erene (withrespet to M) of the entropy log� (M;N), as a funtion of " = M=N for N = 8(diamonds), 12 (irles), 16(boxes) and 24 (a triangle). Solid line orresponds tothe thermodynamial lmit.To onlude, the oinidene method is satisfatory in pratie for thenumber of degrees of freedom below � 25. This turns out to be su�ientto see the signatures of the thermal equilibrium. For more than 12 degreesof fredom the saling of the entropy density is on�rmed with the auraybetter than 20% . The saddle point relation �S=�E = 1=T is also very wellreprodued. 5. Conluding remarksLet us end with the following omments.(a) The relation (1) is but a simplest example of many thermodynamialidentities whih an be tested one the mesurement of entropy is avail-able. For example, if the partile ratios are measured one may test therelation �S(E;n)�n ����E = ��T ; (20)where � is the hemial potential. With some additional assumptionsabout the system in question one may alulate other thermodynam-ial quantities (e.g. free energy) and a host of relations an be testedin priniple.8 Of ourse " = (M + 1=2)=N in this ase.



Studying Thermodynamis in Heavy Ion Collisions 117(b) Employement of the entropy SM brings a bonus: plotting the measuredentropy SM(�) vs log � 1� �, where � is the volume of the elementaryell of the phase spae, and �nding this dependene to be linear withthe slope 1, we will know, without testing validity of the relations(1) or (20), that our system passes the test of an equilibrium. As wehave already pointed out: a reliable measurement of entropy is a moredi�ult task than just testing an equilibrium.() Our argument presented in Setion 3 assumes that the only essentialparameters de�ning the equivalent on�gurations (in the sense of Ma)are energy and multipliity. This is surely a rather strong assumption.Nevertheless we feel it is a justi�ed �rst step in the problem we propose.In fat, a seletion of proper variables may be a ruial point in thisanalysis.(d) The pratial evaluation of the number of oinidenes apparently re-quires (no: of events)2 operations. However, as shown in [5℄, atuallythe neessary omputer e�ort sales almost linearly with the numberof events due to the e�etive algorithm of pair ounting.In onlusion, we have proposed a new method of measurement of theentropy of multipartile systems reated in heavy ion ollisions at high ener-gies. This opens the possibility to test thermodynamial properties of suhsystems. It was also shown that the method seems to be of pratial use inthe oming experiments.The authors thank A. Morel and R. Balian for onstrutive disussions.REFERENCES[1℄ L.Landau, E.Lifszi, Statistial Physis, Chapter II, Volume 5 of Course ofTheoretial Physis, 3rd ed., Pergamon Press, 1980.[2℄ S.K. Ma, Statistial Mehanis, World Sienti�, Singapore 1985, p.425.S.K. Ma, J. Stat. Phys. 26, 221 (1981).S.K.Ma, M.Payne, Phys. Rev. B24, 3984 (1981).[3℄ A. Bialas, M. Gazdziki, Phys. Lett. B252, 483 (1990); K. Fialkowski,B. Wosiek, J. Wosiek, Ata Phys. Pol. B20, 639 (1989).[4℄ G. Baym, Ata Phys. Pol. B29, 1839 (1998).[5℄ A. Bialas, W. Czyz, J. Wosiek, TPJU-22/98, hep-l809 046, to be publishat/9edin the Proeedings of the LATTICE98 Conferene.


