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STUDYING THERMODYNAMICSIN HEAVY ION COLLISIONS�A. Bialas, W. Czyz and J. WosiekM.Smolu
howski Institute of Physi
s, Jagellonian University, Cra
owReymonta 4, 30-059 Kraków, Polande-mail: wosiek�thris
.if.uj.edu.pl(Re
eived September 21, 1998)We dis
uss the possibility of measuring entropy of the system 
reated inheavy ion 
ollisions using the Ma 
oin
iden
e method. The same method
an also be used to test whether the system in question is in a state ofequilibrium.PACS numbers: 13.85.Hd, 24.10.Pa1. Introdu
tionThe assumption of thermodynami
 equilibrium is one of the most 
om-monly used when dis
ussing the system 
reated in 
entral 
ollisions of tworelativisti
 nu
lei. It is by no means obvious, however, that the equilibrationa
tually 
an be a
hieved, sin
e it is re
ognized as a pro
ess whi
h may takelonger time than the life time of the system in question. Be it or not, it is
ertainly important to verify if the 
reated system is indeed in thermal equi-librium. To test this, one may try to 
he
k if the various measured quantitiesdo satisfy relations following from thermodynami
s. In the present note wedis
uss the possibility of testing the relation [1℄�S(E;n)�E ����n = 1T ; (1)whi
h should be valid in any system at thermal equilibrium. On the otherhand the very fa
t of whether our system is in equilibrium 
an be testedwithout 
he
king thermodynami
 relations, as we shall argue below.Testing (1) requires measurement of the temperature T , the energy E,the number of parti
les n and the entropy S of the system in question. It is� This work is supported in part by the Polish Committee for S
ienti�
 Resear
h underthe grants no. 2P03B 08614 and 2P03B 04412.(107)
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lear that by measuring the energies of the parti
les 
reated in the 
ollisionwe 
an measure the energy of the system. It is also generally a

epted thatby measuring the slope in the transverse momentum distribution we 
anmeasure the temperature1. The real di�
ulty is the measurement of entropy.In the present note we propose to adapt to this end the 
oin
iden
e methodproposed some time ago by Ma [2℄. One of the very attra
tive features ofthis method is the possibility of testing whether the system is in equilibriumthrough a pro
edure of res
aling of the measured entropy. We also presentMonte Carlo estimates of the feasibility of the method, based on a simplemodel. We 
on
lude that the method has a large potential, as it requiresmu
h smaller number of events (� pno: of states), than the 
onventionalapproa
h. As a 
onsequen
e its errors are signi�
antly redu
ed 
ompared tothe simple-minded estimates. It is 
ertainly worth to try it in the presentand future high energy experiments.2. Measurement of entropy by the 
oin
iden
e methodBelow we give a summary of the idea presented in [2℄.Ma proposes to 
ount the pairs of 
on�gurations of the investigated sys-tem. Call N
 the number of pairs of �identi
al� 
on�gurations. Call Nt thetotal number of pairs of 
on�gurations. If all 
on�gurations 
onsidered are�equivalent� (i.e. if they 
orrespond to the same 
onditions), then entropyis given by the formula (we give the subs
ript M to the entropy measuredthrough the pro
edure of Ma)S = SM = log�NtN
� : (2)The reason is that NtN
 is the volume in the phase-spa
e o

upied by thesystem. This 
an be seen as follows.Suppose that the phase-spa
e is divided into 
ells. Suppose furthermorethat our system o

upies � 
ells (with a uniform probability). Ea
h 
ellrepresents a di�erent state of the system (ea
h 
ell has as many dimensionsas is the number of variables des
ribing the system). Our problem is to
al
ulate � : S = log(� ). Let us sele
t randomly N 
on�gurations of thesystem (in general N � � , that's the main point). These 
on�gurationso

upy some 
ells. The average o

upation number of a 
ell is N=� � 1.Under this 
ondition, the average number of pairs in the same 
ell is�N� �2 � Nt� 2 ; (3)1 This requires 
orre
tion to the e�e
ts of the hydrodynami
 �ow whi
h seem to beunder a reasonable 
ontrol.
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s in Heavy Ion Collisions 109where Nt � N 2 is the total number of pairs sele
ted. The total number of
oin
iden
es is the sum of (3) over all 
ellsN
 = � �N� �2 ; (4)hen
e � = NtN
 ; (5)and thus (2)2.If the 
on�gurations are not equivalent, one has to divide them into
lasses: within ea
h 
lass they are now equivalent. If the probability distri-bution of 
lasses is P (�), thenSM =X� P (�) log� Nt(�)N
(�)P (�)� : (6)The derivation is given in [2℄ but it 
an be easily understood as a sum ofthe �average over 
lasses� =P� P (�) log �Nt(�)N
(�)� and of the �entropy of thedistribution of 
lasses� = �P� P (�) log[P (�)℄.The 
lasses 
annot be too small, so that number of 
on�gurations in ea
h
lass is su�
ient to obtain a reasonable statisti
s.This is what we retain from Ma. In the next se
tion we present a sug-gestion how to apply this method to measure the entropy of a system ofparti
les produ
ed in high energy intera
tions, and how, through a res
alingpro
edure, to test that they 
ome from a system in equilibrium.3. Appli
ation of 
oin
iden
e method to multiparti
le produ
tionA natural possibility to apply the 
oin
iden
e method to multiparti
leprodu
tion is to identify the 
on�gurations of the statisti
al system produ
edin a 
ollision, with the events observed in experiment. On
e this is a

epted,one 
an pro
eed as follows.(a) Sele
t N events and split them into 
lasses a

ording to the total trans-verse energy E and multipli
ity n re
orded. The number of events inea
h 
lass is denoted by N (E;n).(b) De�ne a �latti
e� in momentum spa
e of individual parti
les 3.2 The formula (3) is only approximate. The exa
t formula is N� N�1� whi
h leads againto (5).3 Perhaps a better method is to transform the momenta into variables whi
h giveuniform distributions (see e.g. [3℄).



110 A. Bialas, W. Czyz, J. WosiekWithin ea
h 
lass:(i) Call the two 
on�gurations �identi
al� if they have the same o

upationnumbers within the a

ura
y of the grid. The number of su
h pairs isdenoted by N
(E;n).(ii) Cal
ulate the ratio (6), i.e.,SM(E;n) = log�Nt(E;n)N
(E;n)� = log�N (E;n)(N (E;n) � 1)N
(E;n) � ; (7)where N (E;n) is the number of events in a given 
lass.A
tually, the 
ondition that the events in one �equivalen
e 
lass� musthave stri
tly the same multipli
ity (otherwise they 
ould never be reallyidenti
al) 
ould be relaxed, e.g. by a

epting that in the de�nition of the�identity� of the two 
on�gurations, the o

upation numbers may di�er bya �xed small amount.One sees from these arguments that in this way one 
an measure theentropy only up to an additive 
onstant. Therefore the interesting thing isnot to measure the absolute value of entropy but rather its dependen
e onenergy and/or multipli
ity.As we already noted in the Introdu
tion, the measurement des
ribed by(7) allows one to perform a simple test of thermalization. When thermody-nami
s is valid, then the Eqs.(1,20) should be satis�ed. Clearly the additive
onstant is irrelevant. One needs, however, a rather pre
ise measurementsbe
ause otherwise the numeri
al estimates of the derivatives �SM(E;n)�E and�SM(E;n)�n are not reliable.The very fa
t of thermalization 
an also be tested without re
ourse tothe validity of (1) or (20). Indeed, the method of Ma derives the expression(2) for entropy under the assumption of 
omplete randomness of the system.When a system is in a state of equilibrium it has random distributions. Theentropy, SM, on the other hand, has the s
aling propertySM = log(� ) = log�
� � = log
 + log� 1�� ;where � is a dimensionless quantity, 
 is a volume in the phase spa
e and� the volume of the elementary 
ell. Therefore, we 
an test the randomness(hen
e the equilibrium) of the anlyzed system as follows:



Studying Thermodynami
s in Heavy Ion Collisions 111� We plot the measured entropy SM(�) versus log � 1��.� When our system is in equilibrium we �nd this dependen
e to be linear4and its slope equal 1.Note that testing only the equilibrium is redu
ed to testing randomness,thus it is not important whether we get an a

urate value of the entropy.Measuring entropy is a more demanding task than testing an equilibrium.In the next se
tion we show the results of a simple Monte Carlo (MC)estimate of the a

ura
ies one 
an a
hieve.4. The 
lassi
al gas of identi
al parti
lesOf 
ourse the main problem is for how big systems the 
oin
iden
emethod works in pra
ti
e. The number of states grows exponentially withthe number of parti
les and the number of subdivisions. Therefore obviouslythere is a limit to what one 
an a
hieve with the �nite sample of events. Inthis se
tion we analyse this question using MC simulations of a 
lassi
al gasof nonintera
ting parti
les. In parti
ular, it is shown that the onset of thethermodynami
 behaviour o

urs soon enough for the 
oin
iden
e methodto be pra
ti
ally feasible.We will also determine the minimal size of the system for the 
ontinuumbehaviour to set in as the problem is not really interesting for too smallnumber of subdivisions of the system.We 
onsider the 
lassi
al gas of nonintera
ing, nonrelativisti
 parti
lesin d dimensions. Sin
e, as mentioned earlier, the method may be appliedto the transverse degrees of freedom only we prefer to retain the dis
ussionin arbitrary dimensions. For the same reason we use the number of degreesof freedom N to 
hara
terize the size of a system. Of 
ourse N = nd in ddimensions 5.Sin
e for nonintera
ting parti
les momentum and spa
e degrees of free-dom fa
torize, we 
onsider for simpli
ity only the momentum states. Thedis
retized expression for the number of states of N degrees of freedom withthe total energy E reads� (M;N) = Xn1;:::nN ;n21+:::n2N=M 1 ; (8)where the momentum pi = ani with some dis
retization s
ale a. A

ordingly2mE = a2M , where the integer M labels the energy of the system and mdenotes the mass of a parti
le.4 When � approa
hes 1=V , where V is the volume of the system, the e�e
ts of quantuminterferen
e between identi
al parti
les [4℄ may disturb this simple behavior.5 Provided only the momentum degrees of freedom are 
onsidered.



112 A. Bialas, W. Czyz, J. WosiekThe generating fun
tionZN (�) = 1XM=0 �M� (M;N) =  1Xn=�1 �n2!N = exp (N log 
(�)) ; (9)fa
torizes and is expressed by a single sum 
(�). The 
oe�
ients � 
annow be simply obtained by 
al
ulating re
ursively expansion of the f(�) =log 
(�) from that of 
(�), and subsequently expansion of ZN (�) from thatof f(�). This pro
edure provided us with the exa
t numbers for the densityof states � (M;N), whi
h were used to ben
hmark the performan
e of ourMonte Carlo.For large M and N the density of states rea
hes its 
ontinuum limit� (M;N) �= �N=2M (N=2�1)(N=2 � 1)! ; M;N large : (10)We will see later that this relation is rather well satis�ed even for moderatevalues of M and N .On the other hand, the thermodynami
 limit, M;N !1;M=N -�xed, isrea
hed rather slowly. In this limit the entropy density 6 s
ales dependingonly on the energy density " = M=N .1N log � (M;N) �= 12[log (") + log (2�) + 1℄; M;N !1; " = M=N = 
onst:(11)The purpose of this exer
ise is to see whether the 
oin
iden
e method 
andete
t this behaviour. 4.1. Monte Carlo simulationsIn prin
iple one should generate a sample of the N 
on�gurationsfn1; n2; : : : ; nNgk, k = 1; :::;N of, integer-valued, one-dimensional momentan1; : : : ; nN , whi
h satisfy the energy 
onservation. For our purpose, how-ever, the details of parti
le kinemati
s, although pra
ti
ally 
umbersome,are not relevant. In order to measure the 
oin
iden
es, it is enough to labeluniquely all multiparti
le states and 
ompare the labels. In this way theproblem simpli�es 
onsiderably, yet the essential question of the onset ofthe thermodynami
 behaviour 
an be addressed.Consequently ea
h Monte Carlo run 
onsisted of a generation of a sampleof N 
on�gurations, represented by integer indi
es, (I1; I2; : : :; IN ); 1 � Ik �� (M;N); k = 1; : : : ;N , uniformly distributed in the whole spa
e of available6 Here and in the following, we will refer to the entropy per one degree of freedom asthe entropy density.



Studying Thermodynami
s in Heavy Ion Collisions 113states. Then we 
ounted the number of 
oin
iden
es N̂
, i.e., the number ofpairs (Ij ; Ik) su
h that Ij = Ik. The estimate for the number of all states isthen �̂ = N (N � 1)=N̂
: (12)Moreover assuming the multinomial distribution of N integers among �bins we have 
al
ulated also the higher moments of the distribution of thenumber of 
oin
iden
ies N
. In parti
ular, the dispersion of N
 reads 7�2[N
℄ = 2 < N
 >= 2N 2� ; (13)whi
h gives for the relative error of the determination of � after N trialsp�2[� ℄� = p2�N : (14)Therefore the estimate of the error, based on the MC data only, is�̂[� ℄=�̂ =q2=N̂
: (15)Eqs. (12), (14) show dire
tly another advantage of the 
oin
iden
e method.Namely, it works for mu
h smaller number of trials (� p� ) than the stan-dard approa
h whi
h measures average o

upation of a single state.A sample of runs is summarized in Table I. Exa
t results for � (M;N)are also quoted. The last 
olumn gives the relative deviation of the 
urrentestimate (
ol. 5) from the exa
t value. It should be 
ompared with theestimate of the error based only on the Monte Carlo data, Eq. (15), givenin 
olumn 6. The estimated error is steadily de
reasing like 1=N and a
tualdeviation follows the suit albeit with some �u
tuations. In all runs we havemade (about 20 times more than shown in the Table) approximalety 30%of a
tual deviations were bigger that the MC estimate, as they should. Of
ourse the formula (14) is essential for planning future Monte Carlo simula-tions. It is interesting to note that the errors de
rease as a number of trialsand not as 1=pN . This is be
ause the true random variable in this problemis the number of pairs, i.e. N 2. In parti
ular the 
omputing e�ort (
ountingpairs) grows like N 2, and 
onsequently the square root of the 
omputationale�ort determines de
rease of errors as it should. Altogether the Monte Carloresults are well under 
ontol and show that the method is quite reliable. Itis however pra
ti
al only if the total number of states is less than severalhundred milions. The last run shown in Table I lasted few hours on a 200MHz PC. This translates into N;M �� 25. We will dis
uss now if this issu�
ient to see the onset of thermodynami
 properties.7 After some approximations valid for 1� N � �



114 A. Bialas, W. Czyz, J. Wosiek TABLE IMonte Carlo results for ^� (M;N) (
ol.5) for di�erent N and M . The third andfourth 
olumn give the number of generated 
on�gurations N , and the numberof observed 
oin
iden
es N̂
. In the last two 
olumns we quote the Monte Carloestimate of the relative error, 
f. Eq. (15), and the a
tual relative deviation Æ=� =j�̂ � � j=� from the exa
t value � also quoted in the Table.N M N N̂
 �̂ �̂=�̂ Æ=�4 000 218 73 376. 0.096 0.1408 000 1000 63 299. 0.045 0.0076 16 000 3866 66 214. 0.023 0.02832 000 15884 64 465. 0.011 0.001� 64 4168 000 30 2 133 067. 0.260 0.10016 000 124 2 064 387. 0.127 0.06512 12 32 000 516 1 984 434. 0.062 0.02464 000 2 110 1 941 201. 0.031 0.001128 000 8 358 1 960 262. 0.015 0.011� 1 938 33620 000 4 99 995 000. 0.707 0.61540 000 16 99 997 504. 0.354 0.61524 80 000 106 60 376 604. 0.137 0.025160 000 422 60 663 128. 0.069 0.020320 000 1596 64 160 200. 0.035 0.036� 61 903 7768 000 8 7 999 000. 0.500 0.07716 000 30 8 532 800. 0.258 0.0156 32 000 132 7 757 334. 0.123 0.10564 000 442 9 266 824. 0.067 0.070128 000 1842 8 894 610. 0.033 0.02724 � 8 667 72040 000 16 99 997 504. 0.354 0.48780 000 32 199 997 504. 0.250 0.0258 160 000 122 209 834 752. 0.128 0.076320 000 510 200 783 680. 0.063 0.029� 195 082 3204.2. ResultsFigure 1 shows the entropy density as a fun
tion of a s
aling variable" = M=N . Statisti
al errors of MC results (and the deviation from theexa
t dis
rete values given by � (M;N)) are mu
h smaller that the sizeof symbols. The data follow ni
ely the 
urves obtained from the 
lassi
alformula in the 
ontinuum, Eq. (10). Considered as a fun
tion of " and N theyobviously show a substantial N -dependen
e. The N varies from 8 (lowest



Studying Thermodynami
s in Heavy Ion Collisions 115
urve) to 24 in this plot. On the other hand, the deviation from the ultimates
aling limit, (Eq. (11), the uppermost 
urve), is around 30% in the worst
ase (N=8,M=30). With N starting from 12, deviations from the in�nitesystem are smaller than 20%. Note that N denotes the number of degreesof freedom, whi
h in d spa
e dimensions 
orresponds to N=d parti
les.
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Fig. 1. Entropy density s = 1N log� (M;N) vs. the energy density " = M=N .Bla
k symbols represent our Monte Carlo results for N=8 (diamonds), 12 (
ir
les),16 (boxes) and 24 (a triangle). Lower solid lines 
orrespond to the 
ontinuumapproximation, Eq. (10), for ea
h N . The uppermost solid line represents thes
aling, thermodynami
al limit, Eq. (11).As a se
ond test we have 
he
ked a di�erential form of Eq. (11)� log ��E = N2E ; (16)whi
h, together with the equipartition of energy, is the basis of the equilib-rium thermodynami
s 1. Changing the variable 2mE = a2M gives� log��E = � log ��M dMdE = � log ��M ME = N2E ; (17)or � log ��M = N2M ; (18)Finally after dis
retization of the derivative we obtainlog�� (M + 1; N)� (M;N) � = N2M + 1 : (19)This equation is tested in Fig. 2, where a half of the inverse of the left handside, as obtained from simulations, is plotted as a fun
tion of ". Solid line



116 A. Bialas, W. Czyz, J. Wosiekrepresents the right hand side 8. Similarly to the previous 
ase agreement isvery good for N � 12. It was ne
essary to redu
e MC errors to the level of1%-3% in order to a
hieve this agreement. Of 
ouse this test is mu
h moresensitive than the previous one sin
e it requires pre
ise measurement of thederivatives.
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Fig. 2. Testing the relation (19). Half of the inverse of the �nite di�eren
e (withrespe
t to M) of the entropy log� (M;N), as a fun
tion of " = M=N for N = 8(diamonds), 12 (
ir
les), 16(boxes) and 24 (a triangle). Solid line 
orresponds tothe thermodynami
al lmit.To 
on
lude, the 
oin
iden
e method is satisfa
tory in pra
ti
e for thenumber of degrees of freedom below � 25. This turns out to be su�
ientto see the signatures of the thermal equilibrium. For more than 12 degreesof fredom the s
aling of the entropy density is 
on�rmed with the a

ura
ybetter than 20% . The saddle point relation �S=�E = 1=T is also very wellreprodu
ed. 5. Con
luding remarksLet us end with the following 
omments.(a) The relation (1) is but a simplest example of many thermodynami
alidentities whi
h 
an be tested on
e the mesurement of entropy is avail-able. For example, if the parti
le ratios are measured one may test therelation �S(E;n)�n ����E = ��T ; (20)where � is the 
hemi
al potential. With some additional assumptionsabout the system in question one may 
al
ulate other thermodynam-i
al quantities (e.g. free energy) and a host of relations 
an be testedin prin
iple.8 Of 
ourse " = (M + 1=2)=N in this 
ase.
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s in Heavy Ion Collisions 117(b) Employement of the entropy SM brings a bonus: plotting the measuredentropy SM(�) vs log � 1� �, where � is the volume of the elementary
ell of the phase spa
e, and �nding this dependen
e to be linear withthe slope 1, we will know, without testing validity of the relations(1) or (20), that our system passes the test of an equilibrium. As wehave already pointed out: a reliable measurement of entropy is a moredi�
ult task than just testing an equilibrium.(
) Our argument presented in Se
tion 3 assumes that the only essentialparameters de�ning the equivalent 
on�gurations (in the sense of Ma)are energy and multipli
ity. This is surely a rather strong assumption.Nevertheless we feel it is a justi�ed �rst step in the problem we propose.In fa
t, a sele
tion of proper variables may be a 
ru
ial point in thisanalysis.(d) The pra
ti
al evaluation of the number of 
oin
iden
es apparently re-quires (no: of events)2 operations. However, as shown in [5℄, a
tuallythe ne
essary 
omputer e�ort s
ales almost linearly with the numberof events due to the e�e
tive algorithm of pair 
ounting.In 
on
lusion, we have proposed a new method of measurement of theentropy of multiparti
le systems 
reated in heavy ion 
ollisions at high ener-gies. This opens the possibility to test thermodynami
al properties of su
hsystems. It was also shown that the method seems to be of pra
ti
al use inthe 
oming experiments.The authors thank A. Morel and R. Balian for 
onstru
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