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BARRIER CROSSING AND TRANSPORTACTIVATED BY KANGAROO FLUCTUATIONS�M. Kostur and J. �uzkaDepartment of Theoretial Physis, Silesian University40-007 Katowie, Poland(Reeived July 9, 1998)We study barrier rossing of Brownian partiles in a bistable symmetripotential and transport of Brownian partiles in spatially periodi stru-tures, driven by both kangaroo �utuations and thermal equilibrium noiseof zero mean values. We onsider exponentially and algebraially orrelatedkangaroo �utuations. Starting with the full Newton�Langevin equation forthe Brownian partile and by introduing saling as well as dimensionlessvariables, we show that the equation is very well approximated by over-damped dynamis in whih inertial e�ets an be negleted. We analyzeproperties of seleted marosopi harateristis of the system suh as themean �rst passage time (MFPT) of partiles from one minimum of thebistable potential to the other and mean stationary veloity of partilesmoving in a spatially periodi potential. In dependene upon statistis ofkangaroo �utuations and temperature of the system, marosopi har-ateristis exhibit distintive non-monotoni behavior. Aordingly, thereexist optimal statistis of �utuations optimizing marosopi harateris-tis.PACS numbers: 05.40.+j, 02.50.�r1. IntrodutionProesses ativated by �utuations and noise play a ruial role in nature.Examples are not only in physis, hemistry or engineering but also in soi-ology, eonomy and politis. One of suh proesses, the noise-assisted esapeover a barrier is realized in suh diverse phenomena as thermioni emission ofeletrons from a metal surfae, hemial reations in ondensed phases, �uxtransitions in SQUIDs and transport of moleules in proteins, to mentiononly a few [1,2℄. An arhetypal mathematial model is based on an equation� The work supported by KBN (Poland) through the Grant No. 2 P03B 079 11.(27)



28 M. Kostur, J. �uzkaof motion of a Brownian partile in a bistable potential and driven by ther-mal non-orrelated �utuations, i.e., by Æ-orrelated Gaussian white noise.An equivalent desription an be presented in terms of a Fokker�Plankequation whih determines the time evolution of a probability density for aposition of the Brownian partile. Motivated by experiments, theoretiianshave started to analyze more realisti models by inorporating a �nite noiseorrelation time or �nite bandwidth. A onsiderable e�ort has been made tostudy dynamial systems driven by olored or orrelated noise suh as expo-nentially orrelated Gaussian or dihotomi proesses [2�5℄. Unfortunately,systems driven by arbitrary orrelated noise are di�ult to handle analyti-ally. An example is algebraially (powerly) orrelated noise with long timetail [6,7℄. In the paper, we study the in�uene of suh noise on two systems,namely, a bistable system and a rathet-type system. The former is verywell known for a sienti� ommunity. The latter has mainly been inspiredby biologial systems (with the hope to explain transport by protein motorsin ells) [8℄. The literature on this subjet an be found in [9�11℄.In Setion 2, we formulate the model of noisy dynamis as the Newtonequation for a partile in bistable or spatially periodi potentials and drivenby two random fores, one desribing interation with surroundings (thermalnoise) and the other that mimi nonthermal �utuations. By introduingspei� saling and dimensionless variables, we demonstrate that the limit ofoverdamped motion is an extremely good approximation to full dynamis.As nonthermal �utuations, we onsider two lasses of kangaroo Markovproesses: exponentially and algebraially orrelated proesses. The formeris named the Kubo�Anderson proess (Setion 3). In Setion 4, forward andbakward master equations for the two dimensional proess in the extendedphase spae are presented. These are partial integro-di�erential equationswhih annot be solved analytially. Therefore, in Setion 5 we apply thesimulation method of the Langevin equation to investigate the mean �rstpassage time problem for the bistable system and transport properties ofthe Brownian partiles in spatially periodi strutures. Our �ndings aredisussed in Setion 6. 2. ModelWe study a Brownian motion of partiles in a one-dimensional symmetribistable potential V̂ (x̂) (Fig. 1) or a spatially periodi potential V̂ (x̂) =V̂ (x̂+ L) of period L (Fig. 2). The dynamis of partiles is assumed to begoverned by a Newton�Langevin equation of the formM �̂x+  _̂x = �dV̂ (x̂)dx̂ + �̂ (t̂) + �̂(t̂) ; (1)



Barrier Crossing and Transport Ativated by Kangaroo Flutuations 29where M denotes mass of the partile and  is the frition oe�ient. Therandom proess �̂ (t̂) represents thermal equilibrium �utuations modelledby Æ-orrelated Gaussian white noise with the �rst two momentsh�̂ (t̂)i = 0 ; h�̂ (t̂)�̂ (û)i = 2D̂Æ(t̂ � û) ; (2)where, aording to the dissipation-�utuation theorem, the thermal-noisestrength D̂ relates to the frition onstant and temperature T of the systemas follows D̂ � kBT (3)with kB denoting the Boltzmann onstant.
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Fig. 2. The pieewise linear periodi potential V̂ (x̂) of period L, barrier height �V̂and asymmetry k.The random fore �̂(t̂) represents zero-mean nonthermal �utuationswhih are modelled here by a symmetri kangaroo proess (by symmetriproess we mean that its probability density p(�̂; t̂) is a symmetri funtion



30 M. Kostur, J. �uzkaof �̂). This proess is desribed brie�y in the next setion. As usual, weassume that �̂ (t̂) is not orrelated with �̂(t̂).Now, let us introdue dimensionless variables. The symmetri bistable(Fig. 1) or spatially periodi (Fig. 2) potentials V̂ (x̂) have the barrier height�V̂ = V̂max�V̂min. The bistable potential has two minima at x̂ = �x̂min anda maximum at x̂ = x̂max = 0. Hene, a harateristi length l0 is determinedby the distane between positions of maximum and minima of the potential,i.e., l0 = jx̂min�x̂maxj. For the spatially periodi potential, the harateristilength l0 is determined by the period L of V̂ (x̂), i.e., l0 = L. To identifya harateristi time �0, let us onsider a deterministi, overdamped motionof a partile in the potential V̂ (x̂), namely, dx̂dt̂ = �dV̂ (x̂)dx̂ : (4)Then we de�ne �0 by the relation l0�0 = �V̂l0 (5)and it reads �0 = l20�V̂ : (6)During this time interval, an overdamped partile moves a distane of lengthl0 under the in�uene of the onstant fore �V̂ =l0. Aordingly, the salingfor the position of the Brownian partile is x = x̂=l0 and for time t = t̂=�0.In this ase, Eq. (1) is transformed into the dimensionless formm�x+ _x = f(x) + � (t) + �(t); f(x) = �dV (x)=dx; (7)where m = M�0 (8)is the dimensionless mass related to inertia of Brownian partiles. Theresaled bistable or spatially periodi potentials V (x) = V̂ (x̂)=�V̂ have nowthe unit-barrier height �V = Vmax � Vmin = 1. Minima of the bistable po-tential V (x) are loated at x = xmin = �1 and a maximum at x = xmax = 0.The spatially periodi potential V (x) = V (x + 1) has a unit period L = 1.The dimensionless strength D of resaled Gaussian white noise � (t) is mea-sured in units of the barrier height, D = kBT=�V̂ . Finally, the resaledkangaroo noise �(t) = (l0=�V̂ )�̂(t̂).



Barrier Crossing and Transport Ativated by Kangaroo Flutuations 31Let us analyze the problem of overdamped dynamis. As the �rst ex-ample, we onsider partiles in �uid. Jean Perrin in his fundamental ex-periments in 1908 [12℄ used partiles of radius R = 10�7m and of massM = 10�17kg. For �uid being water in room temperature, the visosity� = 10�3kg/s m. From the Stokes formula [13℄,  = 6��R, one gets forthe frition oe�ient  = 2 � 10�9kg/s. Assuming a di�usion regime,�V̂ � 5kBT , room temperatures T = 300K of the system and a harater-isti length l0 = 10�5m being 100 times greater than the partile radius, weinfer that m = 5� 10�10 � 1. As the seond example, we take into aountthe kinesin movement along mirotubules inside of ells [14℄. Mirotubulesare spatially periodi strutures whih onsist of tubulin heterodimers ar-ranged in rows alled proto�laments whih, in turn, are oriented nearlyparallel to the mirotubule axis. A heterodimer is about 8nm long [15℄ andis omposed of two various globular subunits: �-tubulin and �-tubulin. Itleads to symmetry breaking of the spatial re�etion of the potential V̂ (x̂)with period L = 8nm. The mass of kinesins m = 6 � 10�22kg and theirradius R = 10�8m. The frition oe�ient  = 2 � 10�8 kg/s whih isalulated from the Stokes formula with � = 10�1 kg/ms (it is the e�etivevisosity oe�ient of the medium [15℄). If we assume that �V̂ = 5kBTand T = 310K then m = 5 � 10�10 � 1. Let us note that the dimensionlessmass m at the aeleration term is 10 orders less than the dimensionlessfrition oe�ient 1 at the veloity term. For that reason inertial e�ets anompletely be negleted and the seond order di�erential equation (7) anbe approximated by the �rst order di�erential equation_x = f(x) + � (t) + �(t): (9)This is an equation desribing overdamped dynamis of Brownian partilesand for the above two examples is indeed a very good approximation to thefull equation (7). Below, we analyze this simpli�ed model.3. Kangaroo stohasti proessNonthermal and nonequilibrium �utuations an be modelled by thekangaroo proess �(t). It is a purely disontinuous (Kolmogorov�Feller)stationary stohasti proess for whih the transition probability per unittime W (�j�0) for a �ipping from the state �0 into the state � fatorizes [16℄,i.e., W (�j�0) = Q(�)�(�0): (10)It means that the system jumps from the state �0 with the frequeny �(�0).The quantity �(�) = 1=�(�) is the mean waiting time in the state �. The



32 M. Kostur, J. �uzkaprobability that the proess jumps into the state � is Q(�) and it is normal-ized over the phase spae of �(t) to unity. The orresponding Kolomogorov-Feller equation for the probability density p(�; t) of this proess takes theform [17℄�p(�; t)�t = Lp(�; t) = ��(�)p(�; t) +Q(�) 1Z�1 �(�)p(�; t)d� ; (11)where L de�ned by this equation is an in�nitesimal (forward) generator ofthe proess �(t). The bakward operator L+, ating on an arbitrary funtiong(�), has the formL+g(�) = ��(�)g(�) + �(�) 1Z�1 Q(�)g(�)d� : (12)It plays a ruial role in �rst passage time problems.For the symmetri kangaroo proess, whih is onsidered in the paper,its orrelation funtion F (t) is [17℄F (t� s) = h�(t)�(s)i = 2 1Z0 �2p(�)exp(��(�)jt� sj) d� ; (13)where p(�) = p(��) is a stationary probability distribution of �(t) and �(�) =�(��). In this ase it is a zero-mean proess, h�(t)i = 0.3.1. Kubo�Anderson �utuationsThe Kubo�Anderson proess is a partiular ase of the kangaroo proesswhen the jumping frequeny is onstant, �(�) = �0 [17�19℄. Then from (13)it follows that the Kubo�Anderson proess is exponentially orrelated,F (t� s) = h�(t)�(s)i = h�2iexp(�jt� sj=�) (14)with the orrelation time � = 1=�0 and h�2i is a mean value of �2(t) overthe stationary probability density p(�) = Q(�), f. (11). We will onsidertwo examples of this noise:(1) the proess �(t) is unbounded, de�ned on (�1;1) and has the Gaus-sian stationary distribution,p(�) = Q(�) = 1p2�� exp(��2=2�2) ; �(t) 2 (�1;1) : (15)



Barrier Crossing and Transport Ativated by Kangaroo Flutuations 33(2) The proess �(t) is bounded, de�ned on [�A;A℄ and has the uniformstationary distribution,p(�) = Q(�) = 12A�(x+A)�(A � x) ; �(t) 2 [�A;A℄ : (16)3.2. Algebraially orrelated �utuationsLet us de�ne the kangaroo proess for whih its orrelation funtion isa power funtion of time. For the bounded proess �(t) de�ned on [�A;A℄and uniformly distributed as in (16), its orrelation funtion has the formF (t� s) = h�(t)�(s)i = 1A AZ0 �2exp(��(�)jt� sj) d� (17)We generalize the previous ase to the situation when the jumping frequeny�(�) depends powerly on the state, i.e.,�(�) = �0� j�jA �3� (18)The distribution Q(�) is given byQ(�) = 1 + 3�2A � j�jA �3� (19)and the orrelation funtion takes the formF (t� s) = h�(t)�(s)i = A23� (1=�; �0jt� sj) � 1�0jt� sj�1=� ; (20)where (a; z) is an Euler inomplete Gamma funtion [20℄. As jt� sj ! 1,the funtion  (1=�; �0jt� sj) tends to a onstant value given by the Eulergamma funtion � (1=�). Aordingly, for long time, �(t) is algebraiallyorrelated with the exponent 1=� exhibiting the long time tail jt� sj�1=�.Let us observe that when � ! 0 then this proess tends to the Kubo�Anderson proess: The jumping frequeny tends to a onstsnt value, �(�)!�0. Using the relation [20℄(a; x) = a�1xae�x 1F1(1; 1 + a; x); (21)where 1F1(1; 1 + a; x) stands for the Kummer (on�uent hypergeometri)funtion, we infer that in (20),h�(t)�(s)i ! �A23 � exp(��0jt� sj) as �! 0 (22)and is the same as (14) with h�2i = A2=3 for uniformly distributed noise.



34 M. Kostur, J. �uzka4. Master equationsThe output proess x(t) in (9) is non-Markovian as driven by orrelatednoise �(t). However, the two-dimensional proess fx(t); �(t)g is Markovianand its joint probability density obeys a master equation of the form [16℄�P (x; �; t)�t = � ��x [f(x) + �℄P (x; �; t) +D �2�x2P (x; �; t)��(�)P (x; �; t) +Q(�) 1Z�1 �(�)P (x; �; t)d� : (23)It is not required to know the probability density P (x; �; t) in the extendedphase spae fx(t); �(t)g. We are rather interested in the probability den-sity P(x; t) of the proess x(t) only. It an be obtained from P (x; �; t) byintegration it over �, i.e.,P(x; t) = 1Z�1 P (x; �; t)d�: (24)Integrating (23) over the noise variable � yields the ontinuity equation forthe distribution density, P(x; t),�P(x; t)�t = ��J(x; t)�x ; (25)here the probability urrent J(x; t) of the proess x(t) readsJ(x; t) = f(x)P(x; t) �D�P(x; t)�x + 1Z�1 �P (x; �; t)d�: (26)The probability urrent J(x; t) haraterizes transport properties of systemsbeause an average veloity of Brownian partiles an be expressed by J(x; t)(Se. 6).The mean �rst passage time T (x) of the proess x(t) is one of the mostimportant quantity for bistable proesses. It is known that the mean �rstpassage time T (x; �) of the joint proess fx(t); �(t)g is determined by thebakward integro-di�erential equation[f(x) + �℄ ��xT (x; �) +D �2�x2T (x; �)� �(�)T (x; �) + �(�) 1Z�1 Q(�)T (x; �)d� = �1 (27)



Barrier Crossing and Transport Ativated by Kangaroo Flutuations 35with spei�ed boundary onditions. The mean �rst passage time T (x) ofthe proess x(t) alone an be alulated as follows [21℄T (x) = 1Z�1 T (x; �)p0(�)d� ; (28)where p0(�) is an initial probability density of noise �(t). Unfortunately,neither (23) nor (27) an analytially be solved.5. Simulations of the Langevin equation with kangarooand Kubo�Anderson noiseThe ompliated master equations (23) and (27) make the method of nu-merial simulations the most important tool in the investigation of dynamisof Brownian partiles driven by kangaroo and thermal soures of noise. Themethod of integration the Langevin equation is a standard proedure. Firstwe integrate Eq. (9) over one time step:ti+1Zti _x(t)dt = x(ti+1)� x(ti)= ti+1Zti f(x(t))dt+ ti+1Zti � (t)dt+ ti+1Zti �(t)dt : (29)If h = ti+1 � ti is su�iently small, we an make following approximations:(A) ti+1Zti f(x(t))dt � f(xi)h ;where xi � x(ti). This is simply a step of Euler integration of ordinarydi�erential equations.(B) ti+1Zti � (t)dt = W (ti + h)�W (ti) = p2DhN(0; 1) ;where W (t) is the Wiener proess and N(0; 1) is a Gaussian randomvariable of zero average and unit standard deviation (we use the fat



36 M. Kostur, J. �uzkathat the Wiener proess is an integral of Gaussian white noise ). Thenumber N(0; 1) has to be an independent random value in eah step(we have used the uniform pseudorandom number generator based onthe linear ongruential generator with shu�ing and then the Box�Muller method to onvert it to Gaussian one).(C) ti+1Zti �(t)dt � �(ti)h ;provided that h is muh smaller than the orrelation time of noise �(t).Thus we an write Eq. (29) in the approximate formxi+1 = xi + f(xi) � h+p2DhN(0; 1) + �(ti)h+O(h3=2) : (30)The algorithm of integration of the Langevin equation onsists of a genera-tion of the trajetory x(t) starting from an initial position x0 = x(0) (whihan be a random variable distributed aording to a spei�ed distributionor it an be deterministi). The method of generation of the partiular re-alization of �(t) is based on generation of states to whih the proess jumpsand time intervals in whih the proess stays in a given state. In the ase ofkangaroo proesses those times are dependent on the urrent state of noise.Therefore �rst we have to alulate the value � of noise as a random variablewith distribution (15) or (16), or (19) and then the jumping rate �(�) whihis onstant or given by (18). When �(�) is known the time the proess spendin the state � is distributed aording toP (T ) = �(�)e�T�(�) (31)and an be easily generated. To avoid side e�ets onneted with the �bad�properties of a pseudorandom number generator we onstruted it in suha way that N partiles are simulated at the same time and the loop overpartiles is inside of the loop over time. Therefore the subsequent alls to thepseudorandom number generator are distributed over di�erent trajetories.This makes the method more stable with respet to quality of pseudorandomnumber generators. In order to investigate the statistial properties of thegenerated kangaroo noise we have alulated the orrelation funtion F (t) =h�(t)�(s)i. The omparison of F (t) alulated from numerial experimentand analytial formula shows good oinidene for short as well as for longtimes (see Fig. 3).
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Fig. 3. The orrelation funtion F (t) of the Kubo-Anderson proess (KAP) andkagaroo �utuations with exponents � = 0:9 and � = 2:0. The amplitude A = 1and the frequeny �0 = 1. 6. DisussionIn this Setion we analyze results of simulations. Two harateristishave been studied, namely, the mean �rst passage time T (x) and the sta-tionary mean veloity hvi of Brownian partiles. To explore features of thesystem we have onsidered three types of noise:(i) Exponentially orrelated Kubo�Anderson noise with the Gaussian sta-tionary distribution (15).(ii) Exponentially orrelated Kubo�Anderson noise with the uniform sta-tionary distribution (16).(iii) Algebraially orrelated kangaroo noise with the uniform stationarydistribution (Se. 3.2).6.1. Mean First Passage TimeWe onsidered the partile moving in the bistable potentialV (x) = x4 � 2x2; x 2 (�1;1); (32)driven by both thermal and kangaroo soures of noise. For all numeri-al experiments we have used dimensionless variables and the overdampedequation of motion (9).To obtain the mean �rst passage time we integrate Eq. (9) numeriallystarting from x(0) = �1 to x(T ) = +1 aording to the formula (30). Themeasured time T has to be averaged over a large number of realizations(usually 103 � 104). The integration step was taken to be h = 10�3 in allsimulations. The hoie of a omparatively small time step assured that



38 M. Kostur, J. �uzkasimulations were reliable and preise. However, this resulted in long time ofalulations. A typial �run� onsisted of 108 time steps and we obtainedone plot onsisting of .a. 10 points in time of order 24 hours.MFPT depends on three parameters: jumping frequeny �0, the strengthD = kBT=�V̂ of thermal �utuations and the variane proportional to � orA for Gaussian and uniformly distributed noise, respetively. Additionally,in the ase of algebraially orrelated noise, it depends on the exponent �.For the system driven by Kubo�Anderson noise with the Gaussian station-ary distribution (unbounded noise), the dependene of MFPT on frequeny�0 is depited in Fig. 4 for three values of a stationary variane � = ph�2iand �xed strength of thermal �utuations (or equivalently temperature of thesystem). We �nd that MFPT is a non-monotoni funtion of the jumping fre-queny. It dereases as the jumping frequeny inreases attaining a minimalvalue at some �0 (the extremal point �0 shifts to the right for greater valuesof �). Next, MFPT grows as �0 !1. One an observe that MFPT mono-tonially diminishes as the variane � inreases. Qualitatively, the samebehaviour exhibits MFPT for systems driven by bounded exponentially aswell as algebraially orrelated noise. We show it in Fig. 5. Inferentially wenote that there exists an optimal jumping frequeny at whih MFPT is thesmallest and the ativation proess is the fastest. Another important fea-ture is related to the fat that exponentially orrelated (Kubo�Anderson)bounded noise is �worse� than algebraially orrelated kangaroo boundednoise of any non-zero value of the exponent �. In turn, algebraially orre-lated noise is observed to be a better ativator when � is bigger. The largervalue of � means the longer tail in the orrelation funtion. Aordingly,long tails make the ativation easier.
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Fig. 5. MFPT against the frequeny �0 for the system ativated by: Gaussian(unbounded) Kubo-Anderson noise (KAP-Gaussian) of the variane � = 2=p3;uniform (bounded) Kubo-Anderson noise (KAP-uniform) of the amplitude A = 2;kangaroo (bounded) noise with A = 2 and � = 1=6, 2. In all ases, temperatureT = 0:001.It seems to be di�ult to ompare the Gaussian (unbounded) Kubo�Anderson noise with uniform (bounded) noise. The parameters A and � maybe related to eah other via, e.g., stationary moments < �n >; n = 1; 2; 3; : : :but it is rather arti�ial. For bounded noise, h�2ni = A2n=(2n + 1) and forGaussian noise, h�2ni = (2n � 1)!!�2n. However, we an observe the samefeatures of this dependene � the optimal value of the frequeny at whihMFPT is the smallest.Next, we fous on the dependene of the esape rate 1/MFPT uponthe amplitude A of bounded noise. Details are shown in Fig. 6. The foref(x) = �dV (x)=dx = �4x3+4x has a loal minimal value f(x0) = �8=3p3
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40 M. Kostur, J. �uzkafor x0 = �1=p3. If temperature T = 0 and if the amplitude A of noise �(t) issmaller than the absolute value of x0, the rossing over the barrier from theleft to the right annot be realized beause _x = f(x)+�(t) < 0. The inreaseof temperature enables weak noise (with the amplitude A below the valuex0) to ativate the system beause thermal noise is unbounded. In turn,the unbounded Kubo�Anderson proess indues the barrier rossing at anytemperature of the system. This is the main di�erene between in�uene ofbounded and unbounded soures of noise. In the former, �utuations annotbe smaller than some minimal value and there exists a threshold value of thenoise amplitude below whih there is no ativation. In the latter, �utuationsan take an arbitrary large value (with orrespondingly low probability) andtherefore no threshold exists. We also notie that exponentially orrelatedKubo-Anderson noise leads to a smaller ativation rate than orrespondingalgebraially orrelated kangaroo noise.6.2. Transport in spatially periodi struturesWe have also performed simulations of transport of Brownian partilesin a spatially periodi system driven by algebraially orrelated boundedkangaroo noise. The ase of exponentially orrelated Gaussian (unbounded)Kubo-Anderson noise has been studied elsewhere [18, 19℄. The potential weuse is pieewise linear (Fig. 2),V (x) = 8<: 1+2x1+2k ; x 2 [�1=2; k℄ mod 1;1�2x1�2k ; x 2 [k; 1=2℄ mod 1; (33)where the parameter k haraterizes asymmetry of the potential: if k = 0then it is symmetri. Otherwise, it is asymmetri. Transport properties aredetermined by the average veloity hv(t)i of partiles,hv(t)i � �dx̂dt̂� = v0�dxdt� = v0 hf(x)i = v0 1Z0 f(x)P(x; t) dx; (34)where integration is over a period L = 1 of the resaled potential and theharateristi veloity v0 = l0=�0. To obtain the above relation, we haveutilized Eq. (9) and the fat that mean values of both soures of �utuationsare zero. Using (26), we obtainhv(t)i = v0 1Z0 J(x; t) dx : (35)



Barrier Crossing and Transport Ativated by Kangaroo Flutuations 41In the stationary state, P (x) = limt!1 P (x; t), and J = limt!1 J(x; t).Then (35) redues to the form hvi = v0 J: (36)The dimensionless probability urrent J depends on the dimensionless pa-rameters, i.e., J = J(D; �0; A; �; k) for bounded noise with the stationaryuniform density.The numerial integration of the equation of motion was arried out a-ording to the algorithm (30). The time required was longer than in the aseof MFPT. The number of steps for one set of parameters was usually 3� 109.Hene, we needed .a. 50�100 h to obtain one plot. The main purpose ofthis part of our work is to study the in�uene of � and �0 on transport. Ageneri graphial representation is the dependene of the probability urrenton temperature. We depited this dependene in Fig. 7 for two values of theexponent � = 1=6 and � = 2:0, and two frequenies �0 = 1:0 and �0 = 2:0.It is simulated for a �xed amplitude A of kangaroo noise with values be-tween two extremal values of the fore f(x). The observed rule is that twofators ause the inrease of the urrent: the inrease of � and the dereaseof �0. Moreover, we plotted the probability urrent against the frequenyfor � = 1=6 and �0 = 1 in the ase of zero temperature limit. The urrentdereases monotonially, approahing zero for an in�nitely large frequeny�0. The limit of �0 = 0 orresponds to the adiabati limit, for whih hangesof noise are muh slower than deterministi relaxation of the system.
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Fig. 7. The probability urrent versus temperature for the system ativated bykangaroo (bounded) noise with �0 = 1, � = 1=6; �0 = 2, � = 1=6; �0 = 1, � = 1;�0 = 2, � = 1. In all ases, the amplitude A = 2.A general note onerns a diretion of partile transport. We onsidereda region of small-to-intermediate values of frequeny. Then the urrent ispositive for a positive asymmetry of the potential with k > 0. Conversely, ifthe potential has a negative asymmetry k < 0, the resulting urrent assumes
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