
Vol. 30 (1999) ACTA PHYSICA POLONICA B No 1
BARRIER CROSSING AND TRANSPORTACTIVATED BY KANGAROO FLUCTUATIONS�M. Kostur and J. �u
zkaDepartment of Theoreti
al Physi
s, Silesian University40-007 Katowi
e, Poland(Re
eived July 9, 1998)We study barrier 
rossing of Brownian parti
les in a bistable symmetri
potential and transport of Brownian parti
les in spatially periodi
 stru
-tures, driven by both kangaroo �u
tuations and thermal equilibrium noiseof zero mean values. We 
onsider exponentially and algebrai
ally 
orrelatedkangaroo �u
tuations. Starting with the full Newton�Langevin equation forthe Brownian parti
le and by introdu
ing s
aling as well as dimensionlessvariables, we show that the equation is very well approximated by over-damped dynami
s in whi
h inertial e�e
ts 
an be negle
ted. We analyzeproperties of sele
ted ma
ros
opi
 
hara
teristi
s of the system su
h as themean �rst passage time (MFPT) of parti
les from one minimum of thebistable potential to the other and mean stationary velo
ity of parti
lesmoving in a spatially periodi
 potential. In dependen
e upon statisti
s ofkangaroo �u
tuations and temperature of the system, ma
ros
opi
 
har-a
teristi
s exhibit distin
tive non-monotoni
 behavior. A

ordingly, thereexist optimal statisti
s of �u
tuations optimizing ma
ros
opi
 
hara
teris-ti
s.PACS numbers: 05.40.+j, 02.50.�r1. Introdu
tionPro
esses a
tivated by �u
tuations and noise play a 
ru
ial role in nature.Examples are not only in physi
s, 
hemistry or engineering but also in so
i-ology, e
onomy and politi
s. One of su
h pro
esses, the noise-assisted es
apeover a barrier is realized in su
h diverse phenomena as thermioni
 emission ofele
trons from a metal surfa
e, 
hemi
al rea
tions in 
ondensed phases, �uxtransitions in SQUIDs and transport of mole
ules in proteins, to mentiononly a few [1,2℄. An ar
hetypal mathemati
al model is based on an equation� The work supported by KBN (Poland) through the Grant No. 2 P03B 079 11.(27)
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zkaof motion of a Brownian parti
le in a bistable potential and driven by ther-mal non-
orrelated �u
tuations, i.e., by Æ-
orrelated Gaussian white noise.An equivalent des
ription 
an be presented in terms of a Fokker�Plan
kequation whi
h determines the time evolution of a probability density for aposition of the Brownian parti
le. Motivated by experiments, theoreti
ianshave started to analyze more realisti
 models by in
orporating a �nite noise
orrelation time or �nite bandwidth. A 
onsiderable e�ort has been made tostudy dynami
al systems driven by 
olored or 
orrelated noise su
h as expo-nentially 
orrelated Gaussian or di
hotomi
 pro
esses [2�5℄. Unfortunately,systems driven by arbitrary 
orrelated noise are di�
ult to handle analyti-
ally. An example is algebrai
ally (powerly) 
orrelated noise with long timetail [6,7℄. In the paper, we study the in�uen
e of su
h noise on two systems,namely, a bistable system and a rat
het-type system. The former is verywell known for a s
ienti�
 
ommunity. The latter has mainly been inspiredby biologi
al systems (with the hope to explain transport by protein motorsin 
ells) [8℄. The literature on this subje
t 
an be found in [9�11℄.In Se
tion 2, we formulate the model of noisy dynami
s as the Newtonequation for a parti
le in bistable or spatially periodi
 potentials and drivenby two random for
es, one des
ribing intera
tion with surroundings (thermalnoise) and the other that mimi
 nonthermal �u
tuations. By introdu
ingspe
i�
 s
aling and dimensionless variables, we demonstrate that the limit ofoverdamped motion is an extremely good approximation to full dynami
s.As nonthermal �u
tuations, we 
onsider two 
lasses of kangaroo Markovpro
esses: exponentially and algebrai
ally 
orrelated pro
esses. The formeris named the Kubo�Anderson pro
ess (Se
tion 3). In Se
tion 4, forward andba
kward master equations for the two dimensional pro
ess in the extendedphase spa
e are presented. These are partial integro-di�erential equationswhi
h 
annot be solved analyti
ally. Therefore, in Se
tion 5 we apply thesimulation method of the Langevin equation to investigate the mean �rstpassage time problem for the bistable system and transport properties ofthe Brownian parti
les in spatially periodi
 stru
tures. Our �ndings aredis
ussed in Se
tion 6. 2. ModelWe study a Brownian motion of parti
les in a one-dimensional symmetri
bistable potential V̂ (x̂) (Fig. 1) or a spatially periodi
 potential V̂ (x̂) =V̂ (x̂+ L) of period L (Fig. 2). The dynami
s of parti
les is assumed to begoverned by a Newton�Langevin equation of the formM �̂x+ 
 _̂x = �dV̂ (x̂)dx̂ + �̂ (t̂) + �̂(t̂) ; (1)
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tuations 29where M denotes mass of the parti
le and 
 is the fri
tion 
oe�
ient. Therandom pro
ess �̂ (t̂) represents thermal equilibrium �u
tuations modelledby Æ-
orrelated Gaussian white noise with the �rst two momentsh�̂ (t̂)i = 0 ; h�̂ (t̂)�̂ (û)i = 2D̂Æ(t̂ � û) ; (2)where, a

ording to the dissipation-�u
tuation theorem, the thermal-noisestrength D̂ relates to the fri
tion 
onstant and temperature T of the systemas follows D̂ � 
kBT (3)with kB denoting the Boltzmann 
onstant.
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Fig. 2. The pie
ewise linear periodi
 potential V̂ (x̂) of period L, barrier height �V̂and asymmetry k.The random for
e �̂(t̂) represents zero-mean nonthermal �u
tuationswhi
h are modelled here by a symmetri
 kangaroo pro
ess (by symmetri
pro
ess we mean that its probability density p(�̂; t̂) is a symmetri
 fun
tion
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zkaof �̂). This pro
ess is des
ribed brie�y in the next se
tion. As usual, weassume that �̂ (t̂) is not 
orrelated with �̂(t̂).Now, let us introdu
e dimensionless variables. The symmetri
 bistable(Fig. 1) or spatially periodi
 (Fig. 2) potentials V̂ (x̂) have the barrier height�V̂ = V̂max�V̂min. The bistable potential has two minima at x̂ = �x̂min anda maximum at x̂ = x̂max = 0. Hen
e, a 
hara
teristi
 length l0 is determinedby the distan
e between positions of maximum and minima of the potential,i.e., l0 = jx̂min�x̂maxj. For the spatially periodi
 potential, the 
hara
teristi
length l0 is determined by the period L of V̂ (x̂), i.e., l0 = L. To identifya 
hara
teristi
 time �0, let us 
onsider a deterministi
, overdamped motionof a parti
le in the potential V̂ (x̂), namely,
 dx̂dt̂ = �dV̂ (x̂)dx̂ : (4)Then we de�ne �0 by the relation
 l0�0 = �V̂l0 (5)and it reads �0 = 
l20�V̂ : (6)During this time interval, an overdamped parti
le moves a distan
e of lengthl0 under the in�uen
e of the 
onstant for
e �V̂ =l0. A

ordingly, the s
alingfor the position of the Brownian parti
le is x = x̂=l0 and for time t = t̂=�0.In this 
ase, Eq. (1) is transformed into the dimensionless formm�x+ _x = f(x) + � (t) + �(t); f(x) = �dV (x)=dx; (7)where m = M
�0 (8)is the dimensionless mass related to inertia of Brownian parti
les. Theres
aled bistable or spatially periodi
 potentials V (x) = V̂ (x̂)=�V̂ have nowthe unit-barrier height �V = Vmax � Vmin = 1. Minima of the bistable po-tential V (x) are lo
ated at x = xmin = �1 and a maximum at x = xmax = 0.The spatially periodi
 potential V (x) = V (x + 1) has a unit period L = 1.The dimensionless strength D of res
aled Gaussian white noise � (t) is mea-sured in units of the barrier height, D = kBT=�V̂ . Finally, the res
aledkangaroo noise �(t) = (l0=�V̂ )�̂(t̂).
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tivated by Kangaroo Flu
tuations 31Let us analyze the problem of overdamped dynami
s. As the �rst ex-ample, we 
onsider parti
les in �uid. Jean Perrin in his fundamental ex-periments in 1908 [12℄ used parti
les of radius R = 10�7m and of massM = 10�17kg. For �uid being water in room temperature, the vis
osity� = 10�3kg/s m. From the Stokes formula [13℄, 
 = 6��R, one gets forthe fri
tion 
oe�
ient 
 = 2 � 10�9kg/s. Assuming a di�usion regime,�V̂ � 5kBT , room temperatures T = 300K of the system and a 
hara
ter-isti
 length l0 = 10�5m being 100 times greater than the parti
le radius, weinfer that m = 5� 10�10 � 1. As the se
ond example, we take into a

ountthe kinesin movement along mi
rotubules inside of 
ells [14℄. Mi
rotubulesare spatially periodi
 stru
tures whi
h 
onsist of tubulin heterodimers ar-ranged in rows 
alled proto�laments whi
h, in turn, are oriented nearlyparallel to the mi
rotubule axis. A heterodimer is about 8nm long [15℄ andis 
omposed of two various globular subunits: �-tubulin and �-tubulin. Itleads to symmetry breaking of the spatial re�e
tion of the potential V̂ (x̂)with period L = 8nm. The mass of kinesins m = 6 � 10�22kg and theirradius R = 10�8m. The fri
tion 
oe�
ient 
 = 2 � 10�8 kg/s whi
h is
al
ulated from the Stokes formula with � = 10�1 kg/ms (it is the e�e
tivevis
osity 
oe�
ient of the medium [15℄). If we assume that �V̂ = 5kBTand T = 310K then m = 5 � 10�10 � 1. Let us note that the dimensionlessmass m at the a

eleration term is 10 orders less than the dimensionlessfri
tion 
oe�
ient 1 at the velo
ity term. For that reason inertial e�e
ts 
an
ompletely be negle
ted and the se
ond order di�erential equation (7) 
anbe approximated by the �rst order di�erential equation_x = f(x) + � (t) + �(t): (9)This is an equation des
ribing overdamped dynami
s of Brownian parti
lesand for the above two examples is indeed a very good approximation to thefull equation (7). Below, we analyze this simpli�ed model.3. Kangaroo sto
hasti
 pro
essNonthermal and nonequilibrium �u
tuations 
an be modelled by thekangaroo pro
ess �(t). It is a purely dis
ontinuous (Kolmogorov�Feller)stationary sto
hasti
 pro
ess for whi
h the transition probability per unittime W (�j�0) for a �ipping from the state �0 into the state � fa
torizes [16℄,i.e., W (�j�0) = Q(�)�(�0): (10)It means that the system jumps from the state �0 with the frequen
y �(�0).The quantity �(�) = 1=�(�) is the mean waiting time in the state �. The
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zkaprobability that the pro
ess jumps into the state � is Q(�) and it is normal-ized over the phase spa
e of �(t) to unity. The 
orresponding Kolomogorov-Feller equation for the probability density p(�; t) of this pro
ess takes theform [17℄�p(�; t)�t = Lp(�; t) = ��(�)p(�; t) +Q(�) 1Z�1 �(�)p(�; t)d� ; (11)where L de�ned by this equation is an in�nitesimal (forward) generator ofthe pro
ess �(t). The ba
kward operator L+, a
ting on an arbitrary fun
tiong(�), has the formL+g(�) = ��(�)g(�) + �(�) 1Z�1 Q(�)g(�)d� : (12)It plays a 
ru
ial role in �rst passage time problems.For the symmetri
 kangaroo pro
ess, whi
h is 
onsidered in the paper,its 
orrelation fun
tion F (t) is [17℄F (t� s) = h�(t)�(s)i = 2 1Z0 �2p(�)exp(��(�)jt� sj) d� ; (13)where p(�) = p(��) is a stationary probability distribution of �(t) and �(�) =�(��). In this 
ase it is a zero-mean pro
ess, h�(t)i = 0.3.1. Kubo�Anderson �u
tuationsThe Kubo�Anderson pro
ess is a parti
ular 
ase of the kangaroo pro
esswhen the jumping frequen
y is 
onstant, �(�) = �0 [17�19℄. Then from (13)it follows that the Kubo�Anderson pro
ess is exponentially 
orrelated,F (t� s) = h�(t)�(s)i = h�2iexp(�jt� sj=�
) (14)with the 
orrelation time �
 = 1=�0 and h�2i is a mean value of �2(t) overthe stationary probability density p(�) = Q(�), 
f. (11). We will 
onsidertwo examples of this noise:(1) the pro
ess �(t) is unbounded, de�ned on (�1;1) and has the Gaus-sian stationary distribution,p(�) = Q(�) = 1p2�� exp(��2=2�2) ; �(t) 2 (�1;1) : (15)
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tuations 33(2) The pro
ess �(t) is bounded, de�ned on [�A;A℄ and has the uniformstationary distribution,p(�) = Q(�) = 12A�(x+A)�(A � x) ; �(t) 2 [�A;A℄ : (16)3.2. Algebrai
ally 
orrelated �u
tuationsLet us de�ne the kangaroo pro
ess for whi
h its 
orrelation fun
tion isa power fun
tion of time. For the bounded pro
ess �(t) de�ned on [�A;A℄and uniformly distributed as in (16), its 
orrelation fun
tion has the formF (t� s) = h�(t)�(s)i = 1A AZ0 �2exp(��(�)jt� sj) d� (17)We generalize the previous 
ase to the situation when the jumping frequen
y�(�) depends powerly on the state, i.e.,�(�) = �0� j�jA �3� (18)The distribution Q(�) is given byQ(�) = 1 + 3�2A � j�jA �3� (19)and the 
orrelation fun
tion takes the formF (t� s) = h�(t)�(s)i = A23�
 (1=�; �0jt� sj) � 1�0jt� sj�1=� ; (20)where 
(a; z) is an Euler in
omplete Gamma fun
tion [20℄. As jt� sj ! 1,the fun
tion 
 (1=�; �0jt� sj) tends to a 
onstant value given by the Eulergamma fun
tion � (1=�). A

ordingly, for long time, �(t) is algebrai
ally
orrelated with the exponent 1=� exhibiting the long time tail jt� sj�1=�.Let us observe that when � ! 0 then this pro
ess tends to the Kubo�Anderson pro
ess: The jumping frequen
y tends to a 
onstsnt value, �(�)!�0. Using the relation [20℄
(a; x) = a�1xae�x 1F1(1; 1 + a; x); (21)where 1F1(1; 1 + a; x) stands for the Kummer (
on�uent hypergeometri
)fun
tion, we infer that in (20),h�(t)�(s)i ! �A23 � exp(��0jt� sj) as �! 0 (22)and is the same as (14) with h�2i = A2=3 for uniformly distributed noise.
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zka4. Master equationsThe output pro
ess x(t) in (9) is non-Markovian as driven by 
orrelatednoise �(t). However, the two-dimensional pro
ess fx(t); �(t)g is Markovianand its joint probability density obeys a master equation of the form [16℄�P (x; �; t)�t = � ��x [f(x) + �℄P (x; �; t) +D �2�x2P (x; �; t)��(�)P (x; �; t) +Q(�) 1Z�1 �(�)P (x; �; t)d� : (23)It is not required to know the probability density P (x; �; t) in the extendedphase spa
e fx(t); �(t)g. We are rather interested in the probability den-sity P(x; t) of the pro
ess x(t) only. It 
an be obtained from P (x; �; t) byintegration it over �, i.e.,P(x; t) = 1Z�1 P (x; �; t)d�: (24)Integrating (23) over the noise variable � yields the 
ontinuity equation forthe distribution density, P(x; t),�P(x; t)�t = ��J(x; t)�x ; (25)here the probability 
urrent J(x; t) of the pro
ess x(t) readsJ(x; t) = f(x)P(x; t) �D�P(x; t)�x + 1Z�1 �P (x; �; t)d�: (26)The probability 
urrent J(x; t) 
hara
terizes transport properties of systemsbe
ause an average velo
ity of Brownian parti
les 
an be expressed by J(x; t)(Se
. 6).The mean �rst passage time T (x) of the pro
ess x(t) is one of the mostimportant quantity for bistable pro
esses. It is known that the mean �rstpassage time T (x; �) of the joint pro
ess fx(t); �(t)g is determined by theba
kward integro-di�erential equation[f(x) + �℄ ��xT (x; �) +D �2�x2T (x; �)� �(�)T (x; �) + �(�) 1Z�1 Q(�)T (x; �)d� = �1 (27)
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tuations 35with spe
i�ed boundary 
onditions. The mean �rst passage time T (x) ofthe pro
ess x(t) alone 
an be 
al
ulated as follows [21℄T (x) = 1Z�1 T (x; �)p0(�)d� ; (28)where p0(�) is an initial probability density of noise �(t). Unfortunately,neither (23) nor (27) 
an analyti
ally be solved.5. Simulations of the Langevin equation with kangarooand Kubo�Anderson noiseThe 
ompli
ated master equations (23) and (27) make the method of nu-meri
al simulations the most important tool in the investigation of dynami
sof Brownian parti
les driven by kangaroo and thermal sour
es of noise. Themethod of integration the Langevin equation is a standard pro
edure. Firstwe integrate Eq. (9) over one time step:ti+1Zti _x(t)dt = x(ti+1)� x(ti)= ti+1Zti f(x(t))dt+ ti+1Zti � (t)dt+ ti+1Zti �(t)dt : (29)If h = ti+1 � ti is su�
iently small, we 
an make following approximations:(A) ti+1Zti f(x(t))dt � f(xi)h ;where xi � x(ti). This is simply a step of Euler integration of ordinarydi�erential equations.(B) ti+1Zti � (t)dt = W (ti + h)�W (ti) = p2DhN(0; 1) ;where W (t) is the Wiener pro
ess and N(0; 1) is a Gaussian randomvariable of zero average and unit standard deviation (we use the fa
t
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zkathat the Wiener pro
ess is an integral of Gaussian white noise ). Thenumber N(0; 1) has to be an independent random value in ea
h step(we have used the uniform pseudorandom number generator based onthe linear 
ongruential generator with shu�ing and then the Box�Muller method to 
onvert it to Gaussian one).(C) ti+1Zti �(t)dt � �(ti)h ;provided that h is mu
h smaller than the 
orrelation time of noise �(t).Thus we 
an write Eq. (29) in the approximate formxi+1 = xi + f(xi) � h+p2DhN(0; 1) + �(ti)h+O(h3=2) : (30)The algorithm of integration of the Langevin equation 
onsists of a genera-tion of the traje
tory x(t) starting from an initial position x0 = x(0) (whi
h
an be a random variable distributed a

ording to a spe
i�ed distributionor it 
an be deterministi
). The method of generation of the parti
ular re-alization of �(t) is based on generation of states to whi
h the pro
ess jumpsand time intervals in whi
h the pro
ess stays in a given state. In the 
ase ofkangaroo pro
esses those times are dependent on the 
urrent state of noise.Therefore �rst we have to 
al
ulate the value � of noise as a random variablewith distribution (15) or (16), or (19) and then the jumping rate �(�) whi
his 
onstant or given by (18). When �(�) is known the time the pro
ess spendin the state � is distributed a

ording toP (T ) = �(�)e�T�(�) (31)and 
an be easily generated. To avoid side e�e
ts 
onne
ted with the �bad�properties of a pseudorandom number generator we 
onstru
ted it in su
ha way that N parti
les are simulated at the same time and the loop overparti
les is inside of the loop over time. Therefore the subsequent 
alls to thepseudorandom number generator are distributed over di�erent traje
tories.This makes the method more stable with respe
t to quality of pseudorandomnumber generators. In order to investigate the statisti
al properties of thegenerated kangaroo noise we have 
al
ulated the 
orrelation fun
tion F (t) =h�(t)�(s)i. The 
omparison of F (t) 
al
ulated from numeri
al experimentand analyti
al formula shows good 
oin
iden
e for short as well as for longtimes (see Fig. 3).
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Fig. 3. The 
orrelation fun
tion F (t) of the Kubo-Anderson pro
ess (KAP) andkagaroo �u
tuations with exponents � = 0:9 and � = 2:0. The amplitude A = 1and the frequen
y �0 = 1. 6. Dis
ussionIn this Se
tion we analyze results of simulations. Two 
hara
teristi
shave been studied, namely, the mean �rst passage time T (x) and the sta-tionary mean velo
ity hvi of Brownian parti
les. To explore features of thesystem we have 
onsidered three types of noise:(i) Exponentially 
orrelated Kubo�Anderson noise with the Gaussian sta-tionary distribution (15).(ii) Exponentially 
orrelated Kubo�Anderson noise with the uniform sta-tionary distribution (16).(iii) Algebrai
ally 
orrelated kangaroo noise with the uniform stationarydistribution (Se
. 3.2).6.1. Mean First Passage TimeWe 
onsidered the parti
le moving in the bistable potentialV (x) = x4 � 2x2; x 2 (�1;1); (32)driven by both thermal and kangaroo sour
es of noise. For all numeri-
al experiments we have used dimensionless variables and the overdampedequation of motion (9).To obtain the mean �rst passage time we integrate Eq. (9) numeri
allystarting from x(0) = �1 to x(T ) = +1 a

ording to the formula (30). Themeasured time T has to be averaged over a large number of realizations(usually 103 � 104). The integration step was taken to be h = 10�3 in allsimulations. The 
hoi
e of a 
omparatively small time step assured that
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zkasimulations were reliable and pre
ise. However, this resulted in long time of
al
ulations. A typi
al �run� 
onsisted of 108 time steps and we obtainedone plot 
onsisting of 
.a. 10 points in time of order 24 hours.MFPT depends on three parameters: jumping frequen
y �0, the strengthD = kBT=�V̂ of thermal �u
tuations and the varian
e proportional to � orA for Gaussian and uniformly distributed noise, respe
tively. Additionally,in the 
ase of algebrai
ally 
orrelated noise, it depends on the exponent �.For the system driven by Kubo�Anderson noise with the Gaussian station-ary distribution (unbounded noise), the dependen
e of MFPT on frequen
y�0 is depi
ted in Fig. 4 for three values of a stationary varian
e � = ph�2iand �xed strength of thermal �u
tuations (or equivalently temperature of thesystem). We �nd that MFPT is a non-monotoni
 fun
tion of the jumping fre-quen
y. It de
reases as the jumping frequen
y in
reases attaining a minimalvalue at some �0 (the extremal point �0 shifts to the right for greater valuesof �). Next, MFPT grows as �0 !1. One 
an observe that MFPT mono-toni
ally diminishes as the varian
e � in
reases. Qualitatively, the samebehaviour exhibits MFPT for systems driven by bounded exponentially aswell as algebrai
ally 
orrelated noise. We show it in Fig. 5. Inferentially wenote that there exists an optimal jumping frequen
y at whi
h MFPT is thesmallest and the a
tivation pro
ess is the fastest. Another important fea-ture is related to the fa
t that exponentially 
orrelated (Kubo�Anderson)bounded noise is �worse� than algebrai
ally 
orrelated kangaroo boundednoise of any non-zero value of the exponent �. In turn, algebrai
ally 
orre-lated noise is observed to be a better a
tivator when � is bigger. The largervalue of � means the longer tail in the 
orrelation fun
tion. A

ordingly,long tails make the a
tivation easier.
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Fig. 4. The depen
en
e of MFPT on the frequen
y �0 in the system a
tivated byGaussian (unbounded) Kubo-Anderson noise of the varian
e � = 1:0, 1:5 and 2:0and for �xed temperature T = 0:001. The insert shows the same for � = 2:0 andfor a greater interval of �0 showing existen
e of the extremal value of �0 minimizingMFPT.
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Fig. 5. MFPT against the frequen
y �0 for the system a
tivated by: Gaussian(unbounded) Kubo-Anderson noise (KAP-Gaussian) of the varian
e � = 2=p3;uniform (bounded) Kubo-Anderson noise (KAP-uniform) of the amplitude A = 2;kangaroo (bounded) noise with A = 2 and � = 1=6, 2. In all 
ases, temperatureT = 0:001.It seems to be di�
ult to 
ompare the Gaussian (unbounded) Kubo�Anderson noise with uniform (bounded) noise. The parameters A and � maybe related to ea
h other via, e.g., stationary moments < �n >; n = 1; 2; 3; : : :but it is rather arti�
ial. For bounded noise, h�2ni = A2n=(2n + 1) and forGaussian noise, h�2ni = (2n � 1)!!�2n. However, we 
an observe the samefeatures of this dependen
e � the optimal value of the frequen
y at whi
hMFPT is the smallest.Next, we fo
us on the dependen
e of the es
ape rate 1/MFPT uponthe amplitude A of bounded noise. Details are shown in Fig. 6. The for
ef(x) = �dV (x)=dx = �4x3+4x has a lo
al minimal value f(x0) = �8=3p3
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Fig. 6. The es
ape rate (1/MFPT) as a fun
tion of the varian
e of noise for thesystem a
tivated by: Gaussian (unbounded) Kubo�Anderson noise of �xed �0 = 0:4and for T = 0:001; uniform (bounded) Kubo�Anderson noise with �0 = 0:4 andfor T = 0:001; kangaroo (bounded) noise with �xed � = 1 and �0 = 0:4 for threevarious temperatures T = 0:001, 0:02, 0:05.
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zkafor x0 = �1=p3. If temperature T = 0 and if the amplitude A of noise �(t) issmaller than the absolute value of x0, the 
rossing over the barrier from theleft to the right 
annot be realized be
ause _x = f(x)+�(t) < 0. The in
reaseof temperature enables weak noise (with the amplitude A below the valuex0) to a
tivate the system be
ause thermal noise is unbounded. In turn,the unbounded Kubo�Anderson pro
ess indu
es the barrier 
rossing at anytemperature of the system. This is the main di�eren
e between in�uen
e ofbounded and unbounded sour
es of noise. In the former, �u
tuations 
annotbe smaller than some minimal value and there exists a threshold value of thenoise amplitude below whi
h there is no a
tivation. In the latter, �u
tuations
an take an arbitrary large value (with 
orrespondingly low probability) andtherefore no threshold exists. We also noti
e that exponentially 
orrelatedKubo-Anderson noise leads to a smaller a
tivation rate than 
orrespondingalgebrai
ally 
orrelated kangaroo noise.6.2. Transport in spatially periodi
 stru
turesWe have also performed simulations of transport of Brownian parti
lesin a spatially periodi
 system driven by algebrai
ally 
orrelated boundedkangaroo noise. The 
ase of exponentially 
orrelated Gaussian (unbounded)Kubo-Anderson noise has been studied elsewhere [18, 19℄. The potential weuse is pie
ewise linear (Fig. 2),V (x) = 8<: 1+2x1+2k ; x 2 [�1=2; k℄ mod 1;1�2x1�2k ; x 2 [k; 1=2℄ mod 1; (33)where the parameter k 
hara
terizes asymmetry of the potential: if k = 0then it is symmetri
. Otherwise, it is asymmetri
. Transport properties aredetermined by the average velo
ity hv(t)i of parti
les,hv(t)i � �dx̂dt̂� = v0�dxdt� = v0 hf(x)i = v0 1Z0 f(x)P(x; t) dx; (34)where integration is over a period L = 1 of the res
aled potential and the
hara
teristi
 velo
ity v0 = l0=�0. To obtain the above relation, we haveutilized Eq. (9) and the fa
t that mean values of both sour
es of �u
tuationsare zero. Using (26), we obtainhv(t)i = v0 1Z0 J(x; t) dx : (35)
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tuations 41In the stationary state, P (x) = limt!1 P (x; t), and J = limt!1 J(x; t).Then (35) redu
es to the form hvi = v0 J: (36)The dimensionless probability 
urrent J depends on the dimensionless pa-rameters, i.e., J = J(D; �0; A; �; k) for bounded noise with the stationaryuniform density.The numeri
al integration of the equation of motion was 
arried out a
-
ording to the algorithm (30). The time required was longer than in the 
aseof MFPT. The number of steps for one set of parameters was usually 3� 109.Hen
e, we needed 
.a. 50�100 h to obtain one plot. The main purpose ofthis part of our work is to study the in�uen
e of � and �0 on transport. Ageneri
 graphi
al representation is the dependen
e of the probability 
urrenton temperature. We depi
ted this dependen
e in Fig. 7 for two values of theexponent � = 1=6 and � = 2:0, and two frequen
ies �0 = 1:0 and �0 = 2:0.It is simulated for a �xed amplitude A of kangaroo noise with values be-tween two extremal values of the for
e f(x). The observed rule is that twofa
tors 
ause the in
rease of the 
urrent: the in
rease of � and the de
reaseof �0. Moreover, we plotted the probability 
urrent against the frequen
yfor � = 1=6 and �0 = 1 in the 
ase of zero temperature limit. The 
urrentde
reases monotoni
ally, approa
hing zero for an in�nitely large frequen
y�0. The limit of �0 = 0 
orresponds to the adiabati
 limit, for whi
h 
hangesof noise are mu
h slower than deterministi
 relaxation of the system.
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Fig. 7. The probability 
urrent versus temperature for the system a
tivated bykangaroo (bounded) noise with �0 = 1, � = 1=6; �0 = 2, � = 1=6; �0 = 1, � = 1;�0 = 2, � = 1. In all 
ases, the amplitude A = 2.A general note 
on
erns a dire
tion of parti
le transport. We 
onsidereda region of small-to-intermediate values of frequen
y. Then the 
urrent ispositive for a positive asymmetry of the potential with k > 0. Conversely, ifthe potential has a negative asymmetry k < 0, the resulting 
urrent assumes
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Fig. 8. The probability 
urrent as a fun
tion of the frequen
y �0 for the systema
tivated by kangaroo (bounded) noise with � = 1=6, L = 2 and �xed T = 0:001.negative values. If k = 0 then J = 0. As follows from [18,19℄, for large valuesof frequen
y (or small 
orrelation time) of Gaussian (unbounded) Kubo-Anderson noise the 
urrent is negative. The explanation of this 
urrent-reversal phenomenon is presented in [18℄.Finally, our simulations lead to the 
on
lusion that long tails (bigger �)in noise 
orrelation a�e
t advantageously on transport in spatially periodi
stru
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